Gängstigning Kalkylator - Konvertera TPI till Stigning Omedelbart Gratis
Gratis gängstigning kalkylator konverterar TPI till stigning och vice versa. Beräkna gängstigning för imperiella och metriska gängor. Omedelbara resultat för bearbetning, ingenjörskonst och reparationer.
Gängstigning Kalkylator
Beräkningsresultat
Beräkningsformel
Gängstigning är avståndet mellan intilliggande gängor. Det beräknas som den reciproka av antalet gängor per enhetslängd:
Gängvisualisering
Dokumentation
Gängstigning Kalkylator: Konvertera TPI till Stigning Omedelbart
Vad är en Gängstigning Kalkylator?
En gängstigning kalkylator är ett precisionsverktyg som konverterar gängor per tum (TPI) till stigningsmått och vice versa, vilket är avgörande för ingenjörer, maskinister och gör-det-själv-entusiaster som arbetar med gängade fästelement. Gängstigning representerar avståndet mellan intilliggande gängtoppar och bestämmer kompatibiliteten hos gängade anslutningar i både imperiska och metriska system.
Denna gratis gängstigning kalkylator konverterar omedelbart mellan gängor per tum (TPI) och stigningsmått, vilket eliminerar manuella beräkningar och förhindrar kostsamma mätfel i bearbetning, ingenjörsarbete och reparationsprojekt. Oavsett om du identifierar ersättningsfästelement eller programmerar CNC-maskiner, är exakta gängstigningsberäkningar avgörande för korrekt passform och funktion.
Spara tid och säkerställ precision med vår kalkylator som stöder både imperiska gängspecifikationer (som UNC, UNF) och metriska gängstandarder (ISO-metrisk), vilket gör den till den kompletta lösningen för alla dina gängmått behov.
Förstå Gängstigning: Definition och Nyckelkoncept
Gängstigning är det linjära avståndet mellan intilliggande gängtoppar (eller rötter) mätt parallellt med gängaxeln. Det representerar hur tätt gängorna är placerade och bestämmer fästelementens kompatibilitet. Gängstigning mäts i:
- Imperiskt system: Tum (härlett från TPI - gängor per tum)
- Metriskt system: Millimeter (direkt specificerat)
Nyckelförhållande: Gängstigning = 1 ÷ gängor per enhetslängd
Denna mätning är avgörande för korrekt val av fästelement, bearbetningsoperationer och för att säkerställa att gängade komponenter passar ihop korrekt.
Imperiska vs. Metriska Gängsystem
I det imperiska systemet specificeras gängor vanligtvis efter deras diameter och antal gängor per tum (TPI). Till exempel har en 1/4"-20 skruv en diameter på 1/4 tum med 20 gängor per tum.
I det metriska systemet specificeras gängor efter deras diameter och stigning i millimeter. Till exempel har en M6×1.0 skruv en diameter på 6 mm med en stigning på 1.0 mm.
Förhållandet mellan dessa mätningar är enkelt:
- Imperial: Stigning (tum) = 1 ÷ Gängor Per Tum
- Metrisk: Stigning (mm) = 1 ÷ Gängor Per Millimeter
Gängstigning vs. Gängled
Det är viktigt att särskilja mellan gängstigning och gängled:
- Gängstigning är avståndet mellan intilliggande gängtoppar.
- Gängled är det linjära avståndet som skruven avancerar vid en fullständig rotation.
För enkelstartade gängor (den vanligaste typen) är stigning och led identiska. Men för flerstartade gängor är led lika med stigning multiplicerat med antalet starter.
Gängstigning Beräkningsformel
Det matematiska förhållandet mellan gängstigning och gängor per enhetslängd baseras på ett enkelt invers förhållande:
Grundformel
Imperiskt System (Tum)
För imperiska gängor blir formeln:
Till exempel har en gänga med 20 TPI en stigning på:
Metriskt System (Millimeter)
För metriska gängor är formeln:
Till exempel har en gänga med 0.5 gängor per mm en stigning på:
Hur man Använder Vår Gängstigning Kalkylator: Steg-för-Steg Guide
Vår gängstigning kalkylator ger omedelbara, exakta konverteringar mellan TPI och stigningsmått. Detta gratis verktyg förenklar gängstigningsberäkningar för både yrkesverksamma och gör-det-själv-entusiaster.
Steg-för-Steg Guide
-
Välj ditt enhetssystem:
- Välj "Imperial" för mätningar i tum
- Välj "Metrisk" för mätningar i millimeter
-
Ange kända värden:
- Om du vet gängorna per enhet (TPI eller gängor per mm), ange detta värde för att beräkna stigningen
- Om du vet stigningen, ange detta värde för att beräkna gängorna per enhet
- Valfritt, ange gängdiametern för referens och visualisering
-
Visa resultaten:
- Kalkylatorn beräknar automatiskt det motsvarande värdet
- Resultatet visas med lämplig precision
- En visuell representation av gängen visas baserat på dina inmatningar
-
Kopiera resultaten (valfritt):
- Klicka på "Kopiera" knappen för att kopiera resultatet till ditt urklipp för användning i andra applikationer
Tips för Exakta Mätningar
- För imperiska gängor uttrycks TPI vanligtvis som ett heltal (t.ex. 20, 24, 32)
- För metriska gängor uttrycks stigningen vanligtvis i millimeter med en decimal (t.ex. 1.0mm, 1.5mm, 0.5mm)
- När du mäter befintliga gängor, använd en gängstigningsmätare för de mest exakta resultaten
- För mycket fina gängor, överväg att använda ett mikroskop eller förstoringsglas för att räkna gängorna noggrant
Praktiska Exempel
Exempel 1: Imperisk Gänga (UNC 1/4"-20)
En standard 1/4-tums UNC (Unified National Coarse) bult har 20 gängor per tum.
- Inmatning: 20 gängor per tum (TPI)
- Beräkning: Stigning = 1 ÷ 20 = 0.050 tum
- Resultat: Gängstigningen är 0.050 tum
Exempel 2: Metrisk Gänga (M10×1.5)
En standard M10 grovgänga har en stigning på 1.5mm.
- Inmatning: 1.5mm stigning
- Beräkning: Gängor per mm = 1 ÷ 1.5 = 0.667 gängor per mm
- Resultat: Det finns 0.667 gängor per millimeter
Exempel 3: Fin Imperisk Gänga (UNF 3/8"-24)
En 3/8-tums UNF (Unified National Fine) bult har 24 gängor per tum.
- Inmatning: 24 gängor per tum (TPI)
- Beräkning: Stigning = 1 ÷ 24 = 0.0417 tum
- Resultat: Gängstigningen är 0.0417 tum
Exempel 4: Fin Metrisk Gänga (M8×1.0)
En fin M8-gänga har en stigning på 1.0mm.
- Inmatning: 1.0mm stigning
- Beräkning: Gängor per mm = 1 ÷ 1.0 = 1 gänga per mm
- Resultat: Det finns 1 gänga per millimeter
Kodexempel för Gängstigningsberäkningar
Här är exempel på hur man beräknar gängstigning i olika programmeringsspråk:
1// JavaScript-funktion för att beräkna gängstigning från gängor per enhet
2function calculatePitch(threadsPerUnit) {
3 if (threadsPerUnit <= 0) {
4 return 0;
5 }
6 return 1 / threadsPerUnit;
7}
8
9// JavaScript-funktion för att beräkna gängor per enhet från stigning
10function calculateThreadsPerUnit(pitch) {
11 if (pitch <= 0) {
12 return 0;
13 }
14 return 1 / pitch;
15}
16
17// Exempelanvändning
18const tpi = 20;
19const pitch = calculatePitch(tpi);
20console.log(`En gänga med ${tpi} TPI har en stigning på ${pitch.toFixed(4)} tum`);
21
1# Python-funktioner för gängstigningsberäkningar
2
3def calculate_pitch(threads_per_unit):
4 """Beräkna gängstigning från gängor per enhet"""
5 if threads_per_unit <= 0:
6 return 0
7 return 1 / threads_per_unit
8
9def calculate_threads_per_unit(pitch):
10 """Beräkna gängor per enhet från stigning"""
11 if pitch <= 0:
12 return 0
13 return 1 / pitch
14
15# Exempelanvändning
16tpi = 20
17pitch = calculate_pitch(tpi)
18print(f"En gänga med {tpi} TPI har en stigning på {pitch:.4f} tum")
19
20metric_pitch = 1.5 # mm
21threads_per_mm = calculate_threads_per_unit(metric_pitch)
22print(f"En gänga med {metric_pitch}mm stigning har {threads_per_mm:.4f} gängor per mm")
23
1' Excel-formel för att beräkna stigning från gängor per tum
2=IF(A1<=0,0,1/A1)
3
4' Excel-formel för att beräkna gängor per tum från stigning
5=IF(B1<=0,0,1/B1)
6
7' Där A1 innehåller värdet för gängor per tum
8' och B1 innehåller värdet för stigning
9
1// Java-metoder för gängstigningsberäkningar
2public class ThreadCalculator {
3 public static double calculatePitch(double threadsPerUnit) {
4 if (threadsPerUnit <= 0) {
5 return 0;
6 }
7 return 1 / threadsPerUnit;
8 }
9
10 public static double calculateThreadsPerUnit(double pitch) {
11 if (pitch <= 0) {
12 return 0;
13 }
14 return 1 / pitch;
15 }
16
17 public static void main(String[] args) {
18 double tpi = 20;
19 double pitch = calculatePitch(tpi);
20 System.out.printf("En gänga med %.0f TPI har en stigning på %.4f tum%n", tpi, pitch);
21
22 double metricPitch = 1.5; // mm
23 double threadsPerMm = calculateThreadsPerUnit(metricPitch);
24 System.out.printf("En gänga med %.1fmm stigning har %.4f gängor per mm%n",
25 metricPitch, threadsPerMm);
26 }
27}
28
1#include <iostream>
2#include <iomanip>
3
4// C++-funktioner för gängstigningsberäkningar
5double calculatePitch(double threadsPerUnit) {
6 if (threadsPerUnit <= 0) {
7 return 0;
8 }
9 return 1 / threadsPerUnit;
10}
11
12double calculateThreadsPerUnit(double pitch) {
13 if (pitch <= 0) {
14 return 0;
15 }
16 return 1 / pitch;
17}
18
19int main() {
20 double tpi = 20;
21 double pitch = calculatePitch(tpi);
22 std::cout << "En gänga med " << tpi << " TPI har en stigning på "
23 << std::fixed << std::setprecision(4) << pitch << " tum" << std::endl;
24
25 double metricPitch = 1.5; // mm
26 double threadsPerMm = calculateThreadsPerUnit(metricPitch);
27 std::cout << "En gänga med " << metricPitch << "mm stigning har "
28 << std::fixed << std::setprecision(4) << threadsPerMm << " gängor per mm" << std::endl;
29
30 return 0;
31}
32
Användningsområden för Gängstigningsberäkningar
Gängstigningsberäkningar är avgörande inom olika områden och tillämpningar:
Tillverkning och Ingenjörsvetenskap
- Precisionbearbetning: Säkerställa korrekta gängspecifikationer för delar som måste passa ihop
- Kvalitetskontroll: Verifiera att tillverkade gängor uppfyller designstandarder
- Omvänd ingenjörskonst: Bestämma specifikationerna för befintliga gängade komponenter
- CNC-programmering: Ställa in maskiner för att skära gängor med rätt stigning
Mekaniska Reparationer och Underhåll
- Ersättning av fästelement: Identifiera rätt ersättningsskruvar, bultar eller muttrar
- Gängreparation: Bestämma rätt storlek på tapp eller matris för gängåterställning
- Utrustningsunderhåll: Säkerställa kompatibla gängade anslutningar under reparationer
- Bilarbete: Arbeta med både metriska och imperiska gängade komponenter
Gör-det-själv och Hemprojekt
- Möbelmontering: Identifiera rätt fästelement för montering
- Rörreparationer: Arbeta med standardiserade rörgängspecifikationer
- Hårdvaruval: Välja rätt skruvar för olika material och tillämpningar
- 3D-utskrift: Designa gängade komponenter med rätt klaringar
Vetenskapliga och Medicinska Tillämpningar
- Laboratorieutrustning: Säkerställa kompatibilitet mellan gängade komponenter
- Optiska instrument: Arbeta med fina gängor för precisa justeringar
- Medicinska enheter: Tillverka komponenter med specialiserade gängkrav
- Rymdteknik: Uppfylla strikta specifikationer för kritiska gängade anslutningar
Alternativ till Gängstigningsberäkningar
Även om gängstigning är en grundläggande mätning, finns det alternativa metoder för att specificera och arbeta med gängor:
- Gängbeteckningssystem: Använda standardiserade gängbeteckningar (t.ex. UNC, UNF, M10×1.5) istället för att beräkna stigning direkt
- Gängmätare: Använda fysiska mätare för att matcha befintliga gängor istället för att mäta och beräkna
- Gängidentifieringsdiagram: Referera till standardiserade diagram för att identifiera vanliga gängspecifikationer
- Digitala gänganalysatorer: Använda specialverktyg som automatiskt mäter och identifierar gängparametrar
Historia om Gängstandarder och Mätningar
Utvecklingen av standardiserade gängsystem har varit avgörande för industriell framsteg, vilket möjliggör utbytbara delar och global handel.
Tidiga Utvecklingar
Konceptet med skruvgängor går tillbaka till antika civilisationer, med bevis på träskruvar som användes i oliv- och vinpressar i Grekland så tidigt som på 300-talet f.Kr. Dessa tidiga gängor var dock inte standardiserade och var vanligtvis skräddarsydda för varje tillämpning.
Det första försöket att standardisera gängor kom från den brittiske ingenjören Sir Joseph Whitworth 1841. Whitworth-gängsystemet blev det första nationellt standardiserade gängsystemet, med en 55-graders gängvinkel och standardiserade stigningar för olika diametrar.
Moderna Gängstandarder
I USA föreslog William Sellers en konkurrerande standard 1864, med en 60-graders gängvinkel, som så småningom utvecklades till den amerikanska nationella standarden. Under andra världskriget ledde behovet av utbytbarhet mellan amerikanska och brittiska gängade komponenter till utvecklingen av Unified Thread Standard (UTS), som fortfarande används idag.
Det metriska gängsystemet, som nu styrs av ISO (International Organization for Standardization), utvecklades i Europa och har blivit den globala standarden för de flesta tillämpningar. Det ISO-metriska gängsystemet har en 60-graders gängvinkel och standard
Relaterade verktyg
Upptäck fler verktyg som kan vara användbara för din arbetsflöde