Perform all kinds of t-tests: one-sample, two-sample, and paired t-tests. This calculator allows you to conduct statistical hypothesis testing for means, aiding in data analysis and interpretation of results.
The t-test is a fundamental statistical tool used to determine if there is a significant difference between the means of groups. It is widely applied in various fields such as psychology, medicine, and business for hypothesis testing. This calculator allows you to perform all kinds of t-tests:
Select the Type of T-Test:
Enter the Required Inputs:
For One-Sample T-Test:
For Two-Sample T-Test:
For Paired T-Test:
Set the Significance Level ():
Choose the Test Direction:
Click the "Calculate" Button:
The calculator will display:
Before using the t-test, ensure that the following assumptions are met:
The t-statistic is calculated as:
Pooled standard deviation ():
The calculator performs the following steps:
While t-tests are powerful, they have assumptions that might not always be met. Alternatives include:
The t-test was developed by William Sealy Gosset in 1908, who published under the pseudonym "Student" while working at the Guinness Brewery in Dublin. The test was designed to monitor the quality of stout by determining if sample batches were consistent with the brewery's standards. Due to confidentiality agreements, Gosset used the pseudonym "Student," leading to the term "Student's t-test."
Over time, the t-test has become a cornerstone in statistical analysis, widely taught and applied in various scientific disciplines. It paved the way for the development of more complex statistical methods and is fundamental in the field of inferential statistics.
Here are code examples for performing a One-Sample T-Test in various programming languages:
1' One-Sample T-Test in Excel VBA
2Sub OneSampleTTest()
3 Dim sampleData As Range
4 Set sampleData = Range("A1:A9") ' Replace with your data range
5 Dim hypothesizedMean As Double
6 hypothesizedMean = 50 ' Replace with your hypothesized mean
7
8 Dim sampleMean As Double
9 Dim sampleStdDev As Double
10 Dim sampleSize As Integer
11 Dim tStat As Double
12
13 sampleMean = Application.WorksheetFunction.Average(sampleData)
14 sampleStdDev = Application.WorksheetFunction.StDev_S(sampleData)
15 sampleSize = sampleData.Count
16
17 tStat = (sampleMean - hypothesizedMean) / (sampleStdDev / Sqr(sampleSize))
18
19 MsgBox "T-Statistic: " & Format(tStat, "0.00")
20End Sub
21
1## One-Sample T-Test in R
2sample_data <- c(51, 49, 52, 48, 50, 47, 53, 49, 51)
3t_test_result <- t.test(sample_data, mu = 50)
4print(t_test_result)
5
1import numpy as np
2from scipy import stats
3
4## One-Sample T-Test in Python
5sample_data = [51, 49, 52, 48, 50, 47, 53, 49, 51]
6t_statistic, p_value = stats.ttest_1samp(sample_data, 50)
7print(f"T-Statistic: {t_statistic:.2f}, P-Value: {p_value:.4f}")
8
1// One-Sample T-Test in JavaScript
2function oneSampleTTest(sample, mu0) {
3 const n = sample.length;
4 const mean = sample.reduce((a, b) => a + b) / n;
5 const sd = Math.sqrt(sample.map(x => (x - mean) ** 2).reduce((a, b) => a + b) / (n - 1));
6 const t = (mean - mu0) / (sd / Math.sqrt(n));
7 return t;
8}
9
10// Example usage:
11const sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
12const tStatistic = oneSampleTTest(sampleData, 50);
13console.log(`T-Statistic: ${tStatistic.toFixed(2)}`);
14
1% One-Sample T-Test in MATLAB
2sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
3[h, p, ci, stats] = ttest(sampleData, 50);
4disp(['T-Statistic: ', num2str(stats.tstat)]);
5disp(['P-Value: ', num2str(p)]);
6
1import org.apache.commons.math3.stat.inference.TTest;
2
3public class OneSampleTTest {
4 public static void main(String[] args) {
5 double[] sampleData = {51, 49, 52, 48, 50, 47, 53, 49, 51};
6 TTest tTest = new TTest();
7 double mu = 50;
8 double tStatistic = tTest.t(mu, sampleData);
9 double pValue = tTest.tTest(mu, sampleData);
10 System.out.printf("T-Statistic: %.2f%n", tStatistic);
11 System.out.printf("P-Value: %.4f%n", pValue);
12 }
13}
14
1using System;
2using MathNet.Numerics.Statistics;
3
4class OneSampleTTest
5{
6 static void Main()
7 {
8 double[] sampleData = {51, 49, 52, 48, 50, 47, 53, 49, 51};
9 double mu0 = 50;
10 int n = sampleData.Length;
11 double mean = Statistics.Mean(sampleData);
12 double stdDev = Statistics.StandardDeviation(sampleData);
13 double tStatistic = (mean - mu0) / (stdDev / Math.Sqrt(n));
14 Console.WriteLine($"T-Statistic: {tStatistic:F2}");
15 }
16}
17
1package main
2
3import (
4 "fmt"
5 "math"
6)
7
8func oneSampleTTest(sample []float64, mu0 float64) float64 {
9 n := float64(len(sample))
10 var sum, mean, sd float64
11
12 for _, v := range sample {
13 sum += v
14 }
15 mean = sum / n
16
17 for _, v := range sample {
18 sd += math.Pow(v - mean, 2)
19 }
20 sd = math.Sqrt(sd / (n - 1))
21
22 t := (mean - mu0) / (sd / math.Sqrt(n))
23 return t
24}
25
26func main() {
27 sampleData := []float64{51, 49, 52, 48, 50, 47, 53, 49, 51}
28 tStatistic := oneSampleTTest(sampleData, 50)
29 fmt.Printf("T-Statistic: %.2f\n", tStatistic)
30}
31
1import Foundation
2
3func oneSampleTTest(sample: [Double], mu0: Double) -> Double {
4 let n = Double(sample.count)
5 let mean = sample.reduce(0, +) / n
6 let sd = sqrt(sample.map { pow($0 - mean, 2) }.reduce(0, +) / (n - 1))
7 let t = (mean - mu0) / (sd / sqrt(n))
8 return t
9}
10
11let sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51]
12let tStatistic = oneSampleTTest(sample: sampleData, mu0: 50)
13print(String(format: "T-Statistic: %.2f", tStatistic))
14
1<?php
2function oneSampleTTest($sample, $mu0) {
3 $n = count($sample);
4 $mean = array_sum($sample) / $n;
5 $sd = sqrt(array_sum(array_map(function($x) use ($mean) {
6 return pow($x - $mean, 2);
7 }, $sample)) / ($n - 1));
8 $t = ($mean - $mu0) / ($sd / sqrt($n));
9 return $t;
10}
11
12$sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
13$tStatistic = oneSampleTTest($sampleData, 50);
14echo "T-Statistic: " . number_format($tStatistic, 2);
15?>
16
1## One-Sample T-Test in Ruby
2def one_sample_t_test(sample, mu0)
3 n = sample.size
4 mean = sample.sum(0.0) / n
5 sd = Math.sqrt(sample.map { |x| (x - mean)**2 }.sum / (n - 1))
6 t = (mean - mu0) / (sd / Math.sqrt(n))
7 t
8end
9
10sample_data = [51, 49, 52, 48, 50, 47, 53, 49, 51]
11t_statistic = one_sample_t_test(sample_data, 50)
12puts format("T-Statistic: %.2f", t_statistic)
13
1// One-Sample T-Test in Rust
2fn one_sample_t_test(sample: &Vec<f64>, mu0: f64) -> f64 {
3 let n = sample.len() as f64;
4 let mean: f64 = sample.iter().sum::<f64>() / n;
5 let sd = (sample.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / (n - 1.0)).sqrt();
6 let t = (mean - mu0) / (sd / n.sqrt());
7 t
8}
9
10fn main() {
11 let sample_data = vec![51.0, 49.0, 52.0, 48.0, 50.0, 47.0, 53.0, 49.0, 51.0];
12 let t_statistic = one_sample_t_test(&sample_data, 50.0);
13 println!("T-Statistic: {:.2}", t_statistic);
14}
15
Problem: A manufacturer claims that the average life of a battery is 50 hours. A consumer group tests 9 batteries and records the following lifespans (in hours):
Is there evidence at the 0.05 significance level to suggest that the average battery life differs from 50 hours?
Solution:
State the Hypotheses:
Calculate Sample Mean ():
Calculate Sample Standard Deviation ():
Calculate T-Statistic:
Degrees of Freedom:
Determine P-Value:
Conclusion:
Discover more tools that might be useful for your workflow