মর্টগেজ ক্যালকুলেটর: ঋণ পরিশোধ এবং সুদ হিসাব করুন

মূলধন, সুদের হার, ঋণের মেয়াদ এবং পরিশোধের ফ্রিকোয়েন্সির ভিত্তিতে মর্টগেজ পরিশোধের পরিমাণ, মোট সুদ পরিশোধ এবং বাকি ব্যালেন্স হিসাব করুন। বাড়ির ক্রেতা, পুনঃঅর্থায়ন এবং আর্থিক পরিকল্পনার জন্য অপরিহার্য।

মর্টগেজ ক্যালকুলেটর

📚

ডকুমেন্টেশন

মর্টগেজ ক্যালকুলেটর

পরিচিতি

একটি মর্টগেজ ক্যালকুলেটর হল একটি অপরিহার্য টুল যেকোনো ব্যক্তির জন্য যে বাড়ি কেনার বা বিদ্যমান মর্টগেজ পুনঃঅর্থায়ন করার কথা ভাবছে। এটি ঋণগ্রহীতাদের তাদের মাসিক পরিশোধ, মোট সুদের পরিমাণ এবং ঋণের জীবনকাল জুড়ে বাকি ব্যালেন্স অনুমান করতে সহায়তা করে। এই ক্যালকুলেটরটি মূল পরিমাণ, সুদের হার, ঋণের মেয়াদ এবং পরিশোধের ফ্রিকোয়েন্সি বিবেচনায় নিয়ে সঠিক গণনা প্রদান করে।

সূত্র

মর্টগেজ পরিশোধের জন্য মৌলিক সূত্র হল:

M=Pr(1+r)n(1+r)n1M = P \frac{r(1+r)^n}{(1+r)^n-1}

যেখানে:

  • M হল মাসিক পরিশোধ
  • P হল মূল (প্রাথমিক ঋণের পরিমাণ)
  • r হল মাসিক সুদের হার (বার্ষিক হার 12 দ্বারা ভাগ করা)
  • n হল ঋণের মেয়াদে মোট মাসের সংখ্যা

বিভিন্ন পরিশোধের ফ্রিকোয়েন্সির জন্য সূত্রটি যথাযথভাবে সামঞ্জস্য করা হয়:

  • সাপ্তাহিক পরিশোধের জন্য: Mw=M×1252M_w = M \times \frac{12}{52}
  • দ্বি-সাপ্তাহিক পরিশোধের জন্য: Mb=M×1226M_b = M \times \frac{12}{26}

মর্টগেজ সূত্রের উদ্ভব

মর্টগেজ সূত্রটি অর্থের বর্তমান মূল্য এবং ভবিষ্যৎ মূল্যের ধারণা থেকে উদ্ভূত হয়। এখানে একটি ধাপে ধাপে ব্যাখ্যা:

  1. n সময়ের মধ্যে সমান পরিশোধের (M) বর্তমান মূল্য (PV) হল:

    PV=M1(1+r)nrPV = M \frac{1 - (1+r)^{-n}}{r}

  2. একটি মর্টগেজে, বর্তমান মূল্য মূল (P) এর সমান, তাই আমরা লিখতে পারিঃ

    P=M1(1+r)nrP = M \frac{1 - (1+r)^{-n}}{r}

  3. M এর জন্য সমাধান করতে, আমরা উভয় পাশে r গুণ করি:

    Pr=M(1(1+r)n)Pr = M(1 - (1+r)^{-n})

  4. তারপর উভয় পাশে (1(1+r)n)(1 - (1+r)^{-n}) দ্বারা ভাগ করি:

    M=Pr1(1+r)nM = \frac{Pr}{1 - (1+r)^{-n}}

  5. সংখ্যক এবং গুণককে (1+r)n(1+r)^n দ্বারা গুণ করি:

    M=Pr(1+r)n(1+r)n1M = P \frac{r(1+r)^n}{(1+r)^n-1}

এই চূড়ান্ত রূপ হল মানক মর্টগেজ পরিশোধ সূত্র।

গণনা

মর্টগেজ ক্যালকুলেটর নিম্নলিখিত পদক্ষেপগুলি সম্পাদন করে:

  1. বার্ষিক সুদের হারকে মাসিক হারে রূপান্তর করুন 12 দ্বারা ভাগ করে।
  2. ঋণ মেয়াদ এবং পরিশোধের ফ্রিকোয়েন্সির ভিত্তিতে পরিশোধের সংখ্যা গণনা করুন।
  3. নিয়মিত পরিশোধের পরিমাণ নির্ধারণ করতে মর্টগেজ পরিশোধ সূত্রটি ব্যবহার করুন।
  4. ঋণের জীবনকালে মোট সুদ পরিমাণ গণনা করুন মূল পরিমাণ থেকে মোট পরিশোধিত পরিমাণ বিয়োগ করে।
  5. একটি অ্যামর্টাইজেশন শিডিউল তৈরি করুন যা সময়ের সাথে সাথে মূল এবং সুদের ব্যালেন্স কিভাবে পরিবর্তিত হয় তা দেখায়।

প্রান্তের ক্ষেত্রে

ক্যালকুলেটরটি কয়েকটি প্রান্তের ক্ষেত্রে পরিচালনা করে:

  • খুব কম সুদের হার (0% এর কাছাকাছি): এই ক্ষেত্রে, পরিশোধটি মূল পরিমাণকে পরিশোধের সংখ্যা দ্বারা ভাগ করা।
  • খুব উচ্চ সুদের হার: ক্যালকুলেটর ব্যবহারকারীদের সম্ভাব্য অযৌক্তিক পরিস্থিতির বিষয়ে সতর্ক করে।
  • সংক্ষিপ্ত ঋণের মেয়াদ (1 বছরের কম): মাসিক, সাপ্তাহিক, বা দ্বি-সাপ্তাহিক পরিশোধের জন্য হিসাবগুলি সামঞ্জস্য করে।
  • দীর্ঘ ঋণের মেয়াদ (30 বছরের বেশি): মোট সুদ পরিশোধের বৃদ্ধি সম্পর্কে একটি সতর্কতা প্রদান করে।

ব্যবহারিক ক্ষেত্রে

  1. বাড়ির ক্রয়ের পরিকল্পনা: সম্ভাব্য বাড়ির ক্রেতারা বিভিন্ন বাড়ির দাম এবং ডাউন পেমেন্টের ভিত্তিতে তাদের মাসিক পরিশোধ অনুমান করতে পারেন।

  2. পুনঃঅর্থায়ন বিশ্লেষণ: বাড়ির মালিকরা তাদের বর্তমান মর্টগেজ শর্তগুলি সম্ভাব্য পুনঃঅর্থায়ন বিকল্পগুলির সাথে তুলনা করতে পারেন।

  3. বাজেটিং: ব্যক্তিদের বোঝার জন্য সহায়তা করে যে একটি মর্টগেজ পরিশোধ তাদের মোট বাজেটে কিভাবে ফিট করে।

  4. ঋণের তুলনা: ব্যবহারকারীরা বিভিন্ন সুদের হার এবং শর্তাবলী প্রবেশ করে বিভিন্ন ঋণ প্রস্তাব তুলনা করতে পারেন।

  5. অতিরিক্ত পরিশোধের প্রভাব: ব্যবহারকারীরা দেখতে পারেন কিভাবে অতিরিক্ত পরিশোধ করা ঋণের মেয়াদ এবং মোট সুদ পরিশোধ কমাতে পারে।

বিকল্প

যদিও স্থির-হার মর্টগেজ সাধারণ, তবে বিবেচনার জন্য বিকল্প রয়েছে:

  1. অ্যাডজাস্টেবল-রেট মর্টগেজ (ARM): সুদের হার সময়ে সময়ে পরিবর্তিত হয়, সম্ভাব্যভাবে কম প্রাথমিক পরিশোধ কিন্তু উচ্চ ঝুঁকি।

    • দৃশ্যকল্প: উপযুক্ত ঋণগ্রহীতাদের জন্য যারা কয়েক বছরের মধ্যে বিক্রি বা পুনঃঅর্থায়ন করার পরিকল্পনা করছে, অথবা যারা শীঘ্রই তাদের আয় বাড়ানোর আশা করছে।
  2. সুদের-শুধু মর্টগেজ: ঋণগ্রহীতারা একটি নির্ধারিত সময়ের জন্য শুধুমাত্র সুদ পরিশোধ করে, ফলে কম প্রাথমিক পরিশোধ কিন্তু পরে উচ্চতর পরিশোধ।

    • দৃশ্যকল্প: অস্বাভাবিক আয়ের সাথে ঋণগ্রহীতাদের জন্য উপযুক্ত, যেমন স্বনিযুক্ত ব্যক্তি বা যারা একটি বড় ভবিষ্যৎ পেমেন্ট আশা করছে।
  3. বেলুন মর্টগেজ: কম মাসিক পরিশোধের সাথে একটি বড় "বেলুন" পরিশোধ শেষের দিকে।

    • দৃশ্যকল্প: ঋণগ্রহীতাদের জন্য উপকারী যারা বেলুন পেমেন্টের আগে আয় বা সম্পদে উল্লেখযোগ্য বৃদ্ধি আশা করে।
  4. সরকার-সমর্থিত ঋণ: FHA, VA, বা USDA ঋণের মতো প্রোগ্রামগুলি প্রায়শই বিভিন্ন শর্ত এবং প্রয়োজনীয়তা থাকে।

    • দৃশ্যকল্প: FHA ঋণ প্রথমবারের বাড়ির ক্রেতাদের জন্য উপযুক্ত যারা কম ক্রেডিট স্কোর রয়েছে, যখন VA ঋণ যোগ্য ভেটেরান এবং সেবা সদস্যদের জন্য উপকারী।

ইতিহাস

মর্টগেজের ধারণাটি হাজার হাজার বছর আগে শুরু হয়, তবে আধুনিক মর্টগেজ গণনা কম্পিউটিং প্রযুক্তির আবির্ভাবের সাথে আরও জটিল হয়ে ওঠে।

  • 1930-এর দশক-1940-এর দশক: অ্যামর্টাইজেশন টেবিলগুলির প্রবর্তন আরও মানক মর্টগেজ গণনার অনুমতি দেয়।
  • 1970-এর দশক-1980-এর দশক: ব্যক্তিগত কম্পিউটারের উত্থান মর্টগেজ গণনাকে ব্যক্তিদের এবং ছোট ব্যবসাগুলির জন্য আরও প্রবেশযোগ্য করে তোলে।
  • 1990-এর দশক-2000-এর দশক: অনলাইন মর্টগেজ ক্যালকুলেটর ব্যাপকভাবে উপলব্ধ হয়ে ওঠে, যা তাত্ক্ষণিক গণনা এবং তুলনা করার অনুমতি দেয়।
  • 2010-এর দশক-বর্তমান: মোবাইল অ্যাপ এবং আরও জটিল অনলাইন টুলগুলি অতিরিক্ত ফ্যাক্টর যেমন কর, বীমা, এবং স্থানীয় বাজারের তথ্য একীভূত করে।

অতিরিক্ত বিবেচনা

  1. বার্ষিক শতাংশ হার (APR): এই হারটি সুদের হার এবং মর্টগেজ বীমা, ক্লোজিং খরচ, এবং ঋণ উত্পাদন ফি-এর মতো অন্যান্য খরচ অন্তর্ভুক্ত করে। এটি ঋণের খরচের একটি আরও ব্যাপক দৃষ্টিভঙ্গি প্রদান করে যা শুধুমাত্র সুদের হারের চেয়ে।

  2. সম্পত্তি কর এবং বীমা: এই অতিরিক্ত খরচগুলি প্রায়শই মাসিক মর্টগেজ পরিশোধে অন্তর্ভুক্ত থাকে এবং একটি এস্ক্রো অ্যাকাউন্টে রাখা হয়। যদিও এটি ঋণের অংশ নয়, তবে এটি মোট মাসিক হাউজিং খরচে উল্লেখযোগ্যভাবে প্রভাব ফেলে।

  3. প্রাইভেট মর্টগেজ বীমা (PMI): 20% এর কম ডাউন পেমেন্ট সহ প্রচলিত ঋণের জন্য প্রয়োজনীয়, PMI মাসিক খরচে যোগ করে যতক্ষণ না ঋণ-টু-মানের অনুপাত 80% এ পৌঁছায়।

  4. প্রিপেমেন্ট জরিমানা: কিছু মর্টগেজে ঋণটি আগে পরিশোধ করার জন্য ফি অন্তর্ভুক্ত থাকে, যা অতিরিক্ত পরিশোধ বা পুনঃঅর্থায়নের বিষয়ে সিদ্ধান্তকে প্রভাবিত করতে পারে।

উদাহরণ

মর্টগেজ পরিশোধ গণনা করার জন্য এখানে কিছু কোড উদাহরণ রয়েছে:

1def calculate_mortgage_payment(principal, annual_rate, years, frequency='monthly'):
2    monthly_rate = annual_rate / 100 / 12
3    num_payments = years * (12 if frequency == 'monthly' else 26 if frequency == 'biweekly' else 52)
4    
5    if monthly_rate == 0:
6        return principal / num_payments
7    
8    payment = principal * (monthly_rate * (1 + monthly_rate) ** num_payments) / ((1 + monthly_rate) ** num_payments - 1)
9    
10    if frequency == 'biweekly':
11        return payment * 12 / 26
12    elif frequency == 'weekly':
13        return payment * 12 / 52
14    else:
15        return payment
16
17## উদাহরণ ব্যবহার
18principal = 200000
19annual_rate = 3.5
20years = 30
21monthly_payment = calculate_mortgage_payment(principal, annual_rate, years)
22print(f"মাসিক পরিশোধ: ${monthly_payment:.2f}")
23

এই উদাহরণগুলি বিভিন্ন প্রোগ্রামিং ভাষায় বিভিন্ন ফ্রিকোয়েন্সির জন্য মর্টগেজ পরিশোধ গণনা করার জন্য কিভাবে কাজ করে তা প্রদর্শন করে। আপনি এই ফাংশনগুলি আপনার নির্দিষ্ট প্রয়োজনের জন্য অভিযোজিত করতে পারেন বা বৃহত্তর আর্থিক বিশ্লেষণ সিস্টেমে তাদের একীভূত করতে পারেন।

ফলাফল ব্যাখ্যা

যখন একটি মর্টগেজ ক্যালকুলেটর ব্যবহার করছেন, ফলাফলগুলি বোঝা গুরুত্বপূর্ণ:

  1. মাসিক পরিশোধ: এটি হল পরিমাণ যা আপনি প্রতি মাসে পরিশোধ করবেন, যার মধ্যে মূল এবং সুদ (এবং সম্ভবত কর এবং বীমা যদি অন্তর্ভুক্ত থাকে)।

  2. মোট সুদ পরিশোধ: এটি দেখায় যে আপনি ঋণের জীবনকাল জুড়ে মোট কত সুদ পরিশোধ করবেন। দীর্ঘমেয়াদী ঋণের ক্ষেত্রে কত সুদ পরিশোধ করা হয় তা দেখা চমকপ্রদ হতে পারে।

  3. অ্যামর্টাইজেশন শিডিউল: এটি দেখায় কিভাবে প্রতি পরিশোধের মধ্যে মূল এবং সুদের মধ্যে ভাগ হয় সময়ের সাথে সাথে। শুরুতে, প্রতিটি পরিশোধের একটি বড় অংশ সুদের দিকে চলে যায়, কিন্তু এটি সময়ের সাথে সাথে মূলের দিকে পরিবর্তিত হয়।

  4. ঋণ ব্যালেন্স: এটি দেখায় যে আপনি ঋণের মেয়াদের যেকোনো সময়ে কত টাকা এখনও দেনা আছেন।

এই ফলাফলগুলি বোঝা আপনাকে আপনার মর্টগেজ সম্পর্কে তথ্যপূর্ণ সিদ্ধান্ত নিতে সহায়তা করতে পারে, যেমন অতিরিক্ত পরিশোধ করা উচিত কিনা বা ভবিষ্যতে পুনঃঅর্থায়ন করা উচিত কিনা।

অ্যামর্টাইজেশন ভিজ্যুয়ালাইজেশন

এখানে একটি SVG ডায়াগ্রাম রয়েছে যা 30 বছরের মর্টগেজের জীবনকালের উপর অ্যামর্টাইজেশন প্রক্রিয়াটি চিত্রিত করে:

ঋণের মেয়াদ (বছর) পরিশোধের বিভাজন মূল সুদ

0 15 30

এই ডায়াগ্রামটি দেখায় কিভাবে প্রতি পরিশোধের মধ্যে মূল এবং সুদের অনুপাত 30 বছরের মর্টগেজের জীবনকাল জুড়ে পরিবর্তিত হয়। ঋণের শুরুতে, প্রতিটি পরিশোধের একটি বড় অংশ সুদের দিকে চলে যায় (হলুদ এলাকা)। সময়ের সাথে সাথে, প্রতিটি পরিশোধের আরও বেশি অংশ মূলের দিকে চলে যায় (সবুজ এলাকা), বাড়ির ইকুইটি তৈরি করে।

রেফারেন্স

  1. "মর্টগেজ ক্যালকুলেটর।" ইনভেস্টোপিডিয়া, https://www.investopedia.com/mortgage-calculator-5084794। 2 আগস্ট 2024 তারিখে প্রবেশ করা হয়েছে।
  2. "মর্টগেজ পরিশোধ কিভাবে গণনা করবেন।" দ্য ব্যালেন্স, https://www.thebalance.com/calculate-mortgage-315668। 2 আগস্ট 2024 তারিখে প্রবেশ করা হয়েছে।
  3. "মর্টগেজ সূত্র।" দ্য মর্টগেজ প্রফেসর, https://www.mtgprofessor.com/formulas.htm। 2 আগস্ট 2024 তারিখে প্রবেশ করা হয়েছে।
🔗

সম্পর্কিত টুলস

আপনার কাজের প্রবাহের জন্য উপকারী হতে পারে এমন আরও টুল আবিষ্কার করুন