ਆਇਓਨਿਕ ਯੌਗਿਕਾਂ ਲਈ ਲੈਟਿਸ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ
ਆਇਓਨ ਚਾਰਜ ਅਤੇ ਰੇਡੀਅਸ ਦਰਜ ਕਰਕੇ ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਲੈਟਿਸ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਆਇਓਨਿਕ ਯੌਗਿਕਾਂ ਦੀ ਸਥਿਰਤਾ ਅਤੇ ਗੁਣਾਂ ਦੀ ਭਵਿੱਖਵਾਣੀ ਲਈ ਜਰੂਰੀ।
ਲੈਟਿਸ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ
ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਆਇਓਨਿਕ ਯੂਗਮਾਂ ਦੀ ਲੈਟਿਸ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੋ। ਲੈਟਿਸ ਊਰਜਾ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਆਇਓਨ ਚਾਰਜ, ਰੇਡੀਅਸ ਅਤੇ ਬੋਰਨ ਗੁਣਾਂਕ ਦਰਜ ਕਰੋ।
ਦਾਖਲ ਪੈਰਾਮੀਟਰ
ਨਤੀਜੇ
ਲੈਟਿਸ ਊਰਜਾ ਉਹ ਊਰਜਾ ਹੈ ਜੋ ਗੈਸੀਅਸ ਆਇਓਨ ਇੱਕਠੇ ਹੋ ਕੇ ਇੱਕ ਠੋਸ ਆਇਓਨਿਕ ਯੂਗਮ ਬਣਾਉਂਦੇ ਸਮੇਂ ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਜ਼ਿਆਦਾ ਨਕਾਰਾਤਮਕ ਮੁੱਲ ਮਜ਼ਬੂਤ ਆਇਓਨਿਕ ਬਾਂਧਾਂ ਨੂੰ ਦਰਸਾਉਂਦੇ ਹਨ।
ਆਇਓਨਿਕ ਬਾਂਧ ਦੀ ਦ੍ਰਿਸ਼ਟੀਕੋਣ
ਗਣਨਾ ਫਾਰਮੂਲਾ
ਲੈਟਿਸ ਊਰਜਾ ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗਣਨਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ:
ਜਿੱਥੇ:
- U = ਲੈਟਿਸ ਊਰਜਾ (U) (kJ/mol)
- N₀ = ਐਵੋਗਾਡਰੋ ਨੰਬਰ (6.022 × 10²³ mol⁻¹)
- A = ਮਾਡਲੰਗ ਸਥਿਰ (1.7476 NaCl ਢਾਂਚੇ ਲਈ)
- z₁ = ਕੈਟਾਇਨ ਚਾਰਜ (z₁) (1)
- z₂ = ਐਨੀਅਨ ਚਾਰਜ (z₂) (-1)
- e = ਮੂਲ ਚਾਰਜ (1.602 × 10⁻¹⁹ C)
- ε₀ = ਖਾਲੀ ਪਾਰਗਮਨਤਾ (8.854 × 10⁻¹² F/m)
- r₀ = ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ (r₀) (0.00 pm)
- n = ਬੋਰਨ ਗੁਣਾਂਕ (n) (9)
ਮੁੱਲਾਂ ਨੂੰ ਬਦਲਣਾ:
ਦਸਤਾਵੇਜ਼ੀਕਰਣ
ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ: ਮੁਫਤ ਆਨਲਾਈਨ ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਟੂਲ
ਸਾਡੇ ਉੱਚ ਗੁਣਵੱਤਾ ਰਸਾਇਣ ਵਿਗਿਆਨ ਕੈਲਕੁਲੇਟਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਸਹੀ ਗਣਨਾ ਕਰੋ
ਸਾਡਾ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕ੍ਰਿਸਟਲਾਈਨ ਢਾਂਚਿਆਂ ਵਿੱਚ ਆਇਓਨਿਕ ਬਾਂਧਨ ਦੀ ਤਾਕਤ ਨੂੰ ਨਿਰਧਾਰਿਤ ਕਰਨ ਲਈ ਪ੍ਰਮੁੱਖ ਮੁਫਤ ਆਨਲਾਈਨ ਟੂਲ ਹੈ। ਇਹ ਅਹਿਮ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਰਸਾਇਣ ਵਿਦਿਆ ਦੇ ਵਿਦਿਆਰਥੀਆਂ, ਖੋਜਕਰਤਿਆਂ ਅਤੇ ਪੇਸ਼ੇਵਰਾਂ ਨੂੰ ਆਇਓਨ ਚਾਰਜ, ਆਇਓਨਿਕ ਰੇਡੀਅਸ ਅਤੇ ਬੋਰਨ ਗੁਣਾਂਕ ਤੋਂ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਸਹੀ ਗਣਨਾ ਕਰਕੇ ਯੋਗਿਕਾਂ ਦੀ ਸਥਿਰਤਾ, ਪਿਘਲਣ ਦੇ ਬਿੰਦੂ ਅਤੇ ਘੁਲਣਸ਼ੀਲਤਾ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।
ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਆਇਓਨਿਕ ਯੋਗਿਕਾਂ ਦੇ ਗੁਣਾਂ ਅਤੇ ਵਿਹਾਰ ਨੂੰ ਸਮਝਣ ਲਈ ਬੁਨਿਆਦੀ ਹੈ। ਸਾਡਾ ਉਪਯੋਗਕਰਤਾ-ਮਿੱਤਰ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਜਟਿਲ ਕ੍ਰਿਸਟਲੋਗ੍ਰਾਫਿਕ ਗਣਨਾਵਾਂ ਨੂੰ ਪਹੁੰਚਯੋਗ ਬਣਾਉਂਦਾ ਹੈ, ਤੁਹਾਨੂੰ ਸਮੱਗਰੀ ਦੀ ਸਥਿਰਤਾ ਦਾ ਵਿਸ਼ਲੇਸ਼ਣ ਕਰਨ, ਭੌਤਿਕ ਗੁਣਾਂ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਅਤੇ ਸਮੱਗਰੀ ਵਿਗਿਆਨ, ਫਾਰਮਾਸਿਊਟਿਕਲ ਅਤੇ ਰਸਾਇਣਕ ਇੰਜੀਨੀਅਰਿੰਗ ਵਿੱਚ ਐਪਲੀਕੇਸ਼ਨਾਂ ਲਈ ਯੋਗਿਕ ਡਿਜ਼ਾਈਨ ਨੂੰ ਸੁਧਾਰਨ ਵਿੱਚ ਮਦਦ ਕਰਦਾ ਹੈ।
ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੀ ਹੈ?
ਲੈਟਿਸ਼ ਊਰਜਾ ਨੂੰ ਉਸ ਊਰਜਾ ਦੇ ਤੌਰ 'ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜੋ ਵੱਖਰੇ ਗੈਸੀ ਆਇਓਨਾਂ ਦੇ ਮਿਲਣ 'ਤੇ ਇੱਕ ਠੋਸ ਆਇਓਨਿਕ ਯੋਗਿਕ ਬਣਾਉਂਦੇ ਸਮੇਂ ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਰਸਾਇਣ ਵਿਗਿਆਨ ਵਿੱਚ ਇਹ ਮੂਲ ਧਾਰਨਾ ਹੇਠ ਲਿਖੇ ਪ੍ਰਕਿਰਿਆ ਵਿੱਚ ਊਰਜਾ ਦੇ ਬਦਲਾਅ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ:
ਜਿੱਥੇ:
- ਇੱਕ ਧਾਤੂ ਕੈਟਾਇਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜਿਸਦਾ ਚਾਰਜ n+
- ਇੱਕ ਗੈਰ-ਧਾਤੂ ਐਨਿਯਨ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਜਿਸਦਾ ਚਾਰਜ n-
- ਨਤੀਜੇ ਵਜੋਂ ਬਣਿਆ ਆਇਓਨਿਕ ਯੋਗਿਕ ਹੈ
ਲੈਟਿਸ਼ ਊਰਜਾ ਹਮੇਸ਼ਾ ਨਕਾਰਾਤਮਕ (ਐਕਸੋਥਰਮਿਕ) ਹੁੰਦੀ ਹੈ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਆਇਓਨਿਕ ਲੈਟਿਸ਼ ਦੇ ਬਣਨ ਦੌਰਾਨ ਊਰਜਾ ਛੱਡੀ ਜਾਂਦੀ ਹੈ। ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਮਾਤਰਾ ਕਈ ਕਾਰਕਾਂ 'ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ:
- ਆਇਓਨ ਚਾਰਜ: ਉੱਚ ਚਾਰਜ ਮਜ਼ਬੂਤ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਆਕਰਸ਼ਣ ਅਤੇ ਉੱਚ ਲੈਟਿਸ਼ ਊਰਜਾ ਨੂੰ ਜਨਮ ਦਿੰਦੇ ਹਨ
- ਆਇਓਨ ਆਕਾਰ: ਛੋਟੇ ਆਇਓਨ ਛੋਟੇ ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀਆਂ ਦੇ ਕਾਰਨ ਮਜ਼ਬੂਤ ਆਕਰਸ਼ਣ ਬਣਾਉਂਦੇ ਹਨ
- ਕ੍ਰਿਸਟਲ ਢਾਂਚਾ: ਆਇਓਨਾਂ ਦੇ ਵੱਖ-ਵੱਖ ਵਿਵਸਥਾਵਾਂ ਮਾਡਲੰਗ ਸਥਿਰਤਾ ਅਤੇ ਕੁੱਲ ਲੈਟਿਸ਼ ਊਰਜਾ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਕਰਦੀਆਂ ਹਨ
ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ, ਜਿਸਦੀ ਵਰਤੋਂ ਸਾਡਾ ਕੈਲਕੁਲੇਟਰ ਕਰਦਾ ਹੈ, ਇਹਨਾਂ ਕਾਰਕਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦਾ ਹੈ ਤਾਂ ਜੋ ਸਹੀ ਲੈਟਿਸ਼ ਊਰਜਾ ਮੁੱਲ ਪ੍ਰਦਾਨ ਕੀਤੇ ਜਾ ਸਕਣ।
ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਲਈ ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ
ਬੋਰਨ-ਲੈਂਡੇ ਸਮੀਕਰਨ ਸਾਡੇ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਵਿੱਚ ਸਹੀ ਲੈਟਿਸ਼ ਊਰਜਾ ਮੁੱਲਾਂ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਣ ਵਾਲਾ ਮੁੱਖ ਫਾਰਮੂਲਾ ਹੈ:
ਜਿੱਥੇ:
- = ਲੈਟਿਸ਼ ਊਰਜਾ (kJ/mol)
- = ਐਵੋਗਾਡਰੋ ਦਾ ਨੰਬਰ (6.022 × 10²³ mol⁻¹)
- = ਮਾਡਲੰਗ ਸਥਿਰਤਾ (ਕ੍ਰਿਸਟਲ ਢਾਂਚੇ 'ਤੇ ਨਿਰਭਰ, NaCl ਢਾਂਚੇ ਲਈ 1.7476)
- = ਕੈਟਾਇਨ ਦਾ ਚਾਰਜ
- = ਐਨਿਯਨ ਦਾ ਚਾਰਜ
- = ਪ੍ਰਾਥਮਿਕ ਚਾਰਜ (1.602 × 10⁻¹⁹ C)
- = ਖਾਲੀ ਪਰਮੀਟੀਵਿਟੀ (8.854 × 10⁻¹² F/m)
- = ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ (ਮੀਟਰਾਂ ਵਿੱਚ ਆਇਓਨਿਕ ਰੇਡੀਅਸ ਦਾ ਜੋੜ)
- = ਬੋਰਨ ਗੁਣਾਂਕ (ਆਮ ਤੌਰ 'ਤੇ 5-12 ਦੇ ਵਿਚਕਾਰ, ਠੋਸ ਦੀ ਸੰਕੁਚਨਸ਼ੀਲਤਾ ਨਾਲ ਸੰਬੰਧਿਤ)
ਇਹ ਸਮੀਕਰਨ ਵਿਰੋਧੀ ਚਾਰਜ ਵਾਲੇ ਆਇਓਨਾਂ ਵਿਚਕਾਰ ਆਕਰਸ਼ਕ ਬਲਾਂ ਅਤੇ ਇਲੈਕਟ੍ਰਾਨ ਕਲਾਉਡਾਂ ਦੇ ਓਵਰਲੈਪ ਹੋਣ 'ਤੇ ਹੋਣ ਵਾਲੇ ਰਿਪਲਸਿਵ ਬਲਾਂ ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖਦਾ ਹੈ।
ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ ਦੀ ਗਣਨਾ
ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ () ਨੂੰ ਕੈਟਾਇਨ ਅਤੇ ਐਨਿਯਨ ਰੇਡੀਅਸ ਦੇ ਜੋੜ ਦੇ ਤੌਰ 'ਤੇ ਗਣਨਾ ਕੀਤੀ ਜਾਂਦੀ ਹੈ:
ਜਿੱਥੇ:
- = ਪਿਕੋਮੀਟਰ (pm) ਵਿੱਚ ਕੈਟਾਇਨ ਦਾ ਰੇਡੀਅਸ
- = ਪਿਕੋਮੀਟਰ (pm) ਵਿੱਚ ਐਨਿਯਨ ਦਾ ਰੇਡੀਅਸ
ਇਹ ਦੂਰੀ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਸਹੀ ਗਣਨਾ ਲਈ ਮਹੱਤਵਪੂਰਨ ਹੈ, ਕਿਉਂਕਿ ਆਇਓਨਾਂ ਵਿਚਕਾਰ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਆਕਰਸ਼ਣ ਇਸ ਦੂਰੀ ਦੇ ਉਲਟ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੀ ਹੈ।
ਸਾਡੇ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਦੀ ਵਰਤੋਂ ਕਰਨ ਦਾ ਤਰੀਕਾ: ਕਦਮ-ਦਰ-ਕਦਮ ਗਾਈਡ
ਸਾਡਾ ਮੁਫਤ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਜਟਿਲ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਲਈ ਇੱਕ ਸਹਿਜ ਇੰਟਰਫੇਸ ਪ੍ਰਦਾਨ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਵੀ ਆਇਓਨਿਕ ਯੋਗਿਕ ਦੀ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰਨ ਲਈ ਹੇਠ ਲਿਖੇ ਸਧਾਰਨ ਕਦਮਾਂ ਦੀ ਪਾਲਣਾ ਕਰੋ:
- ਕੈਟਾਇਨ ਚਾਰਜ ਦਰਜ ਕਰੋ (ਸਕਾਰਾਤਮਕ ਪੂਰਾ ਸੰਖਿਆ, ਉਦਾਹਰਨ ਲਈ, Na⁺ ਲਈ 1, Mg²⁺ ਲਈ 2)
- ਐਨਿਯਨ ਚਾਰਜ ਦਰਜ ਕਰੋ (ਨਕਾਰਾਤਮਕ ਪੂਰਾ ਸੰਖਿਆ, ਉਦਾਹਰਨ ਲਈ, Cl⁻ ਲਈ -1, O²⁻ ਲਈ -2)
- ਕੈਟਾਇਨ ਰੇਡੀਅਸ ਦਰਜ ਕਰੋ ਪਿਕੋਮੀਟਰ (pm) ਵਿੱਚ
- ਐਨਿਯਨ ਰੇਡੀਅਸ ਦਰਜ ਕਰੋ ਪਿਕੋਮੀਟਰ (pm) ਵਿੱਚ
- ਬੋਰਨ ਗੁਣਾਂਕ ਦਰਜ ਕਰੋ (ਆਮ ਤੌਰ 'ਤੇ 5-12 ਦੇ ਵਿਚਕਾਰ, ਬਹੁਤ ਸਾਰੀਆਂ ਯੋਗਿਕਾਂ ਲਈ 9 ਆਮ ਹੈ)
- ਨਤੀਜੇ ਵੇਖੋ ਜੋ ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ ਅਤੇ ਗਣਨਾ ਕੀਤੀ ਗਈ ਲੈਟਿਸ਼ ਊਰਜਾ ਦਿਖਾਉਂਦੇ ਹਨ
ਕੈਲਕੁਲੇਟਰ ਆਪਣੇ ਇਨਪੁਟ ਦੀ ਆਟੋਮੈਟਿਕ ਤੌਰ 'ਤੇ ਜਾਂਚ ਕਰਦਾ ਹੈ ਤਾਂ ਜੋ ਇਹ ਯਕੀਨੀ ਬਣਾਇਆ ਜਾ ਸਕੇ ਕਿ ਉਹ ਭੌਤਿਕ ਤੌਰ 'ਤੇ ਅਰਥਪੂਰਨ ਸੀਮਾਵਾਂ ਵਿੱਚ ਹਨ:
- ਕੈਟਾਇਨ ਚਾਰਜ ਇੱਕ ਸਕਾਰਾਤਮਕ ਪੂਰਾ ਸੰਖਿਆ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ
- ਐਨਿਯਨ ਚਾਰਜ ਇੱਕ ਨਕਾਰਾਤਮਕ ਪੂਰਾ ਸੰਖਿਆ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ
- ਦੋਹਾਂ ਆਇਓਨਿਕ ਰੇਡੀਅਸ ਸਕਾਰਾਤਮਕ ਮੁੱਲ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ
- ਬੋਰਨ ਗੁਣਾਂਕ ਸਕਾਰਾਤਮਕ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ
ਕਦਮ-ਦਰ-ਕਦਮ ਉਦਾਹਰਨ
ਆਓ ਸੋਡੀਅਮ ਕਲੋਰਾਈਡ (NaCl) ਦੀ ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਕਰੀਏ:
- ਕੈਟਾਇਨ ਚਾਰਜ ਦਰਜ ਕਰੋ: 1 (Na⁺ ਲਈ)
- ਐਨਿਯਨ ਚਾਰਜ ਦਰਜ ਕਰੋ: -1 (Cl⁻ ਲਈ)
- ਕੈਟਾਇਨ ਰੇਡੀਅਸ ਦਰਜ ਕਰੋ: 102 pm (Na⁺ ਲਈ)
- ਐਨਿਯਨ ਰੇਡੀਅਸ ਦਰਜ ਕਰੋ: 181 pm (Cl⁻ ਲਈ)
- ਬੋਰਨ ਗੁਣਾਂਕ ਦਰਜ ਕਰੋ: 9 (NaCl ਲਈ ਆਮ ਮੁੱਲ)
ਕੈਲਕੁਲੇਟਰ ਨਿਰਧਾਰਿਤ ਕਰੇਗਾ:
- ਇੰਟਰਆਇਓਨਿਕ ਦੂਰੀ: 102 pm + 181 pm = 283 pm
- ਲੈਟਿਸ਼ ਊਰਜਾ: ਲਗਭਗ -787 kJ/mol
ਇਹ ਨਕਾਰਾਤਮਕ ਮੁੱਲ ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਸੋਡੀਅਮ ਅਤੇ ਕਲੋਰਾਈਡ ਆਇਓਨ ਇੱਕਠੇ ਹੋਣ 'ਤੇ ਊਰਜਾ ਛੱਡੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਕਿ ਯੋਗਿਕ ਦੀ ਸਥਿਰਤਾ ਦੀ ਪੁਸ਼ਟੀ ਕਰਦਾ ਹੈ।
ਆਮ ਆਇਓਨਿਕ ਰੇਡੀਅਸ ਅਤੇ ਬੋਰਨ ਗੁਣਾਂਕ
ਕੈਲਕੁਲੇਟਰ ਦੀ ਪ੍ਰਭਾਵਸ਼ੀਲ ਵਰਤੋਂ ਕਰਨ ਵਿੱਚ ਤੁਹਾਡੀ ਮਦਦ ਕਰਨ ਲਈ, ਇੱਥੇ ਆਮ ਆਇਓਨਿਕ ਰੇਡੀਅਸ ਅਤੇ ਬੋਰਨ ਗੁਣਾਂਕ ਹਨ ਜੋ ਅਕਸਰ ਮਿਲਦੇ ਆਇਓਨਾਂ ਲਈ ਹਨ:
ਕੈਟਾਇਨ ਰੇਡੀਅਸ (ਪਿਕੋਮੀਟਰ ਵਿੱਚ)
ਕੈਟਾਇਨ | ਚਾਰਜ | ਆਇਓਨਿਕ ਰੇਡੀਅਸ (pm) |
---|---|---|
Li⁺ | 1+ | 76 |
Na⁺ | 1+ | 102 |
K⁺ | 1+ | 138 |
Mg²⁺ | 2+ | 72 |
Ca²⁺ | 2+ | 100 |
Ba²⁺ | 2+ | 135 |
Al³⁺ | 3+ | 54 |
Fe²⁺ | 2+ | 78 |
Fe³⁺ | 3+ | 65 |
Cu²⁺ | 2+ | 73 |
Zn²⁺ | 2+ | 74 |
ਐਨਿਯਨ ਰੇਡੀਅਸ (ਪਿਕੋਮੀਟਰ ਵਿੱਚ)
ਐਨਿਯਨ | ਚਾਰਜ | ਆਇਓਨਿਕ ਰੇਡੀਅਸ (pm) |
---|---|---|
F⁻ | 1- | 133 |
Cl⁻ | 1- | 181 |
Br⁻ | 1- | 196 |
I⁻ | 1- | 220 |
O²⁻ | 2- | 140 |
S²⁻ | 2- | 184 |
N³⁻ | 3- | 171 |
P³⁻ | 3- | 212 |
ਆਮ ਬੋਰਨ ਗੁਣਾਂਕ
ਯੋਗਿਕ ਕਿਸਮ | ਬੋਰਨ ਗੁਣਾਂਕ (n) |
---|---|
ਆਲਕਲੀ ਹਾਲਾਈਡ | 5-10 |
ਆਲਕਲਾਈਨ ਧਾਤੂ ਆਕਸਾਈਡ | 7-12 |
ਟ੍ਰਾਂਜ਼ੀਸ਼ਨ ਧਾਤੂ ਯੋਗਿਕ | 8-12 |
ਇਹ ਮੁੱਲ ਤੁਹਾਡੇ ਗਣਨਾਵਾਂ ਲਈ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਵਜੋਂ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ, ਹਾਲਾਂਕਿ ਇਹ ਵਿਸ਼ੇਸ਼ ਸੰਦਰਭ ਸਰੋਤ ਦੇ ਅਨੁਸਾਰ ਥੋੜ੍ਹਾ ਬਦਲ ਸਕਦੇ ਹਨ।
ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਦੇ ਵਾਸਤਵਿਕ ਦੁਨੀਆ ਦੇ ਐਪਲੀਕੇਸ਼ਨ
ਲੈਟਿਸ਼ ਊਰਜਾ ਦੀ ਗਣਨਾ ਸਾਡੇ ਲੈਟਿਸ਼ ਊਰਜਾ ਕੈਲਕੁਲੇਟਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਰਸਾਇਣ ਵਿਗਿਆਨ, ਸਮੱਗਰੀ ਵਿਗਿਆਨ ਅਤੇ ਸੰਬੰਧਿਤ ਖੇਤਰਾਂ ਵਿੱਚ ਕਈ ਪ੍ਰਯੋਗਾਤਮਕ ਐਪਲੀਕੇਸ਼ਨਾਂ ਹਨ:
1. ਭੌਤਿਕ ਗੁਣਾਂ ਦੀ ਭਵਿੱਖਬਾਣੀ
ਲੈਟਿਸ਼ ਊਰਜਾ ਕਈ ਭੌਤਿਕ ਗੁਣਾਂ ਨਾਲ ਸਿੱਧਾ ਸੰਬੰਧਿਤ ਹੈ:
- ਪਿਘਲਣ ਅਤੇ ਉਬਾਲ ਦੇ ਬਿੰਦੂ: ਉੱਚ ਲੈਟਿਸ਼ ਊਰਜਾ ਵਾਲੀਆਂ ਯੋਗਿਕਾਂ ਆਮ ਤੌਰ 'ਤੇ ਮਜ਼ਬੂਤ ਆਇਓਨਿਕ ਬਾਂਧਾਂ ਦੇ ਕਾਰਨ ਉੱਚ ਪਿਘਲਣ ਅਤੇ ਉਬਾਲ ਦੇ ਬਿੰਦੂ ਰੱਖਦੀਆਂ ਹਨ।
- ਕਠੋਰਤਾ: ਉੱਚ ਲੈਟਿਸ਼ ਊਰਜਾ ਆਮ ਤੌਰ 'ਤੇ ਮਜ਼ਬੂਤ ਕ੍ਰਿਸਟਲਾਂ ਨੂੰ ਜਨਮ ਦਿੰਦੀ ਹੈ ਜੋ ਵਿਗੜਨ ਦੇ ਖਿਲਾਫ਼ ਵੱਧ ਪ੍ਰਤੀਰੋਧੀ ਹੁੰਦੇ ਹਨ।
- ਘੁਲਣਸ਼ੀਲਤਾ: ਉੱਚ ਲੈਟਿਸ਼ ਊਰਜਾ ਵਾਲੀਆਂ ਯੋਗਿਕਾਂ ਆਮ ਤੌਰ 'ਤੇ ਪਾਣੀ ਵਿੱਚ ਘੁਲਣਸ਼ੀਲਤਾ ਵਿੱਚ ਘੱਟ ਹੁੰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਆਇਓਨਾਂ ਨੂੰ ਵੱਖ ਕਰਨ ਲਈ ਲੋੜੀਂਦੀ ਊਰਜਾ ਹਾਈਡਰੇਸ਼ਨ ਊਰਜਾ ਤੋਂ ਵੱਧ ਹੁੰਦੀ ਹੈ।
ਉਦਾਹਰਨ ਵਜੋਂ, MgO (ਲੈਟਿਸ਼ ਊਰਜਾ ≈ -3795 kJ/mol) ਦੀ ਤੁਲਨਾ NaCl (ਲੈਟਿਸ਼ ਊਰਜਾ ≈ -787 kJ/mol) ਨਾਲ ਕਰਨ ਨਾਲ ਇਹ ਸਮਝਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ MgO ਦਾ ਪਿਘਲਣ ਦਾ ਬਿੰਦੂ ਕਿਉਂ ਵੱਧ ਹੈ (2852°C NaCl ਲਈ 801°C ਦੇ ਮੁਕਾਬਲੇ)।
2. ਰਸਾਇਣਕ ਪ੍ਰਤੀਕਿਰਿਆ ਦੀ ਸਮਝ
ਲੈਟਿਸ਼ ਊਰਜਾ ਸਹਾਇਤਾ ਕਰਦੀ ਹੈ:
- ਐਸਿਡ-ਬੇਸ ਵਿਹਾਰ: ਆਕਸਾਈਡ ਦੀਆਂ ਬੇਸਾਂ ਜਾਂ ਐ
ਸਬੰਧਿਤ ਸੰਦਾਰਬਾਰਾਂ
ਆਪਣੇ ਕਾਰਜ ਦੇ ਲਈ ਵਰਤਣ ਯੋਗ ਹੋਣ ਵਾਲੇ ਹੋਰ ਸੰਦੇਸ਼ ਦੀ ਖੋਜ ਕਰੋ