Partial Pressure Calculator for Gas Mixtures | Dalton's Law

Calculate the partial pressure of gases in a mixture using total pressure and mole fractions. Based on Dalton's law for ideal gas mixtures with instant results.

ืžื—ืฉื‘ื•ืŸ ืœื—ืฅ ื—ืœืงื™

ืคืจืžื˜ืจื™ื ืงืœื˜

ืจื›ื™ื‘ื™ ื’ื–

๐Ÿ“š

ืชื™ืขื•ื“

ืžื—ืฉื‘ื•ืŸ ืœื—ืฅ ื—ืœืงื™ - ื›ืœื™ ื—ื™ื ืžื™ ืžืงื•ื•ืŸ ืœืชืขืจื•ื‘ื•ืช ื’ื–ื™ื

ื—ื™ืฉื•ื‘ ืœื—ืฅ ื—ืœืงื™ ื‘ืืžืฆืขื•ืช ื—ื•ืง ื“ืœื˜ื•ืŸ

ื”ืžื—ืฉื‘ื•ืŸ ืฉืœ ืœื—ืฅ ื—ืœืงื™ ื”ื•ื ื›ืœื™ ื—ื™ื ืžื™ ื—ื™ื•ื ื™ ืขื‘ื•ืจ ืžื“ืขื ื™ื, ืžื”ื ื“ืกื™ื ื•ืกื˜ื•ื“ื ื˜ื™ื ื”ืขื•ื‘ื“ื™ื ืขื ืชืขืจื•ื‘ื•ืช ื’ื–ื™ื. ื‘ืืžืฆืขื•ืช ื—ื•ืง ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื“ืœื˜ื•ืŸ, ืžื—ืฉื‘ื•ืŸ ื–ื” ืงื•ื‘ืข ืืช ืชืจื•ืžืช ื”ืœื—ืฅ ื”ืื™ืฉื™ืช ืฉืœ ื›ืœ ืจื›ื™ื‘ ื’ื– ื‘ืชืขืจื•ื‘ืช ื›ืœืฉื”ื™. ืคืฉื•ื˜ ื”ื–ืŸ ืืช ื”ืœื—ืฅ ื”ื›ื•ืœืœ ื•ืืช ืฉื‘ืจ ื”ืžื•ืœื™ื ืฉืœ ื›ืœ ืจื›ื™ื‘ ื›ื“ื™ ืœื—ืฉื‘ ืžื™ื“ ืืช ืขืจื›ื™ ื”ืœื—ืฅ ื”ื—ืœืงื™ ื‘ื“ื™ื•ืง.

ืžื—ืฉื‘ื•ืŸ ื–ื” ืฉืœ ืชืขืจื•ื‘ื•ืช ื’ื–ื™ื ื”ื•ื ืงืจื™ื˜ื™ ืขื‘ื•ืจ ื™ื™ืฉื•ืžื™ื ื‘ื›ื™ืžื™ื”, ืคื™ื–ื™ืงื”, ืจืคื•ืื” ื•ื”ื ื“ืกื” ืฉื‘ื”ื ื”ื‘ื ืช ื”ืชื ื”ื’ื•ืช ื”ื’ื–ื™ื ืžื ื™ืขื” ื ื™ืชื•ื— ืชื™ืื•ืจื˜ื™ ื•ืคืชืจื•ื ื•ืช ืžืขืฉื™ื™ื. ื‘ื™ืŸ ืื ืืชื” ืžื ืชื— ื’ื–ื™ื ืื˜ืžื•ืกืคืจื™ื™ื, ืžืขืฆื‘ ืชื”ืœื™ื›ื™ื ื›ื™ืžื™ื™ื ืื• ืœื•ืžื“ ืคื™ื–ื™ื•ืœื•ื’ื™ื” ื ืฉื™ืžืชื™ืช, ื—ื™ืฉื•ื‘ื™ ืœื—ืฅ ื—ืœืงื™ ืžื“ื•ื™ืงื™ื ื”ื ื™ืกื•ื“ื™ื™ื ืœืขื‘ื•ื“ื” ืฉืœืš.

ืžื”ื• ืœื—ืฅ ื—ืœืงื™?

ืœื—ืฅ ื—ืœืงื™ ืžืชื™ื™ื—ืก ืœืœื—ืฅ ืฉื™ืชื‘ืฆืข ืขืœ ื™ื“ื™ ืจื›ื™ื‘ ื’ื– ืกืคืฆื™ืคื™ ืื ื”ื•ื ื”ื™ื” ืชื•ืคืก ืืช ื›ืœ ื”ื ืคื— ืฉืœ ืชืขืจื•ื‘ืช ื”ื’ื– ื‘ืื•ืชื” ื˜ืžืคืจื˜ื•ืจื”. ืœืคื™ ื—ื•ืง ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื“ืœื˜ื•ืŸ, ื”ืœื—ืฅ ื”ื›ื•ืœืœ ืฉืœ ืชืขืจื•ื‘ืช ื’ื–ื™ื ืฉื•ื•ื” ืœืกื›ื•ื ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื›ืœ ืจื›ื™ื‘ ื’ื– ื‘ื•ื“ื“. ืขื™ืงืจื•ืŸ ื–ื” ื”ื•ื ื™ืกื•ื“ื™ ืœื”ื‘ื ืช ื”ืชื ื”ื’ื•ืช ื”ื’ื–ื™ื ื‘ืžืขืจื›ื•ืช ืฉื•ื ื•ืช.

ื”ืงื•ื ืกืคื˜ ื ื™ืชืŸ ืœื‘ื™ื˜ื•ื™ ืžืชืžื˜ื™ ื›ืš:

Ptotal=P1+P2+P3+...+PnP_{total} = P_1 + P_2 + P_3 + ... + P_n

ืื™ืคื”:

  • PtotalP_{total} ื”ื•ื ื”ืœื—ืฅ ื”ื›ื•ืœืœ ืฉืœ ืชืขืจื•ื‘ืช ื”ื’ื–ื™ื
  • P1,P2,P3,...,PnP_1, P_2, P_3, ..., P_n ื”ื ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ืจื›ื™ื‘ื™ ื”ื’ื–ื™ื ื”ื‘ื•ื“ื“ื™ื

ืขื‘ื•ืจ ื›ืœ ืจื›ื™ื‘ ื’ื–, ื”ืœื—ืฅ ื”ื—ืœืงื™ ื”ื•ื ืคืจื•ืคื•ืจืฆื™ื•ื ืœื™ ื™ืฉื™ืจื•ืช ืœืฉื‘ืจ ื”ืžื•ืœื™ื ืฉืœื• ื‘ืชืขืจื•ื‘ืช:

Pi=Xiร—PtotalP_i = X_i \times P_{total}

ืื™ืคื”:

  • PiP_i ื”ื•ื ื”ืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ืจื›ื™ื‘ ื”ื’ื– i
  • XiX_i ื”ื•ื ืฉื‘ืจ ื”ืžื•ืœื™ื ืฉืœ ืจื›ื™ื‘ ื”ื’ื– i
  • PtotalP_{total} ื”ื•ื ื”ืœื—ืฅ ื”ื›ื•ืœืœ ืฉืœ ืชืขืจื•ื‘ืช ื”ื’ื–ื™ื

ืฉื‘ืจ ื”ืžื•ืœื™ื (XiX_i) ืžื™ื™ืฆื’ ืืช ื”ื™ื—ืก ื‘ื™ืŸ ืžืกืคืจ ื”ืžื•ืœื™ื ืฉืœ ืจื›ื™ื‘ ื’ื– ืกืคืฆื™ืคื™ ืœืžืกืคืจ ื”ื›ื•ืœืœ ืฉืœ ื›ืœ ื”ื’ื–ื™ื ื‘ืชืขืจื•ื‘ืช:

Xi=nintotalX_i = \frac{n_i}{n_{total}}

ืื™ืคื”:

  • nin_i ื”ื•ื ืžืกืคืจ ื”ืžื•ืœื™ื ืฉืœ ืจื›ื™ื‘ ื”ื’ื– i
  • ntotaln_{total} ื”ื•ื ื”ืžืกืคืจ ื”ื›ื•ืœืœ ืฉืœ ืžื•ืœื™ื ืฉืœ ื›ืœ ื”ื’ื–ื™ื ื‘ืชืขืจื•ื‘ืช

ืกื›ื•ื ื›ืœ ืฉื‘ืจื™ ื”ืžื•ืœื™ื ื‘ืชืขืจื•ื‘ืช ื’ื–ื™ื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืฉื•ื•ื” ืœ-1:

โˆ‘i=1nXi=1\sum_{i=1}^{n} X_i = 1

ื ื•ืกื—ื” ื•ื—ื™ืฉื•ื‘

ื ื•ืกื—ืช ืœื—ืฅ ื—ืœืงื™ ื‘ืกื™ืกื™ืช

ื”ื ื•ืกื—ื” ื”ื‘ืกื™ืกื™ืช ืœื—ื™ืฉื•ื‘ ื”ืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ืจื›ื™ื‘ ื’ื– ื‘ืชืขืจื•ื‘ืช ื”ื™ื:

Pi=Xiร—PtotalP_i = X_i \times P_{total}

ืงืฉืจ ืคืฉื•ื˜ ื–ื” ืžืืคืฉืจ ืœื ื• ืœืงื‘ื•ืข ืืช ืชืจื•ืžืช ื”ืœื—ืฅ ืฉืœ ื›ืœ ื’ื– ื›ืืฉืจ ืื ื• ื™ื•ื“ืขื™ื ืืช ื—ืœืงื• ื‘ืชืขืจื•ื‘ืช ื•ืืช ื”ืœื—ืฅ ื”ื›ื•ืœืœ ืฉืœ ื”ืžืขืจื›ืช.

ื“ื•ื’ืžืช ื—ื™ืฉื•ื‘

ื ื ื™ื— ืฉื™ืฉ ืœื ื• ืชืขืจื•ื‘ืช ื’ื–ื™ื ื”ืžื›ื™ืœื” ื—ืžืฆืŸ (Oโ‚‚), ื—ื ืงืŸ (Nโ‚‚) ื•ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™ (COโ‚‚) ื‘ืœื—ืฅ ื›ื•ืœืœ ืฉืœ 2 ืื˜ืžื•ืกืคืจื•ืช (atm):

  • ื—ืžืฆืŸ (Oโ‚‚): ืฉื‘ืจ ืžื•ืœื™ื = 0.21
  • ื—ื ืงืŸ (Nโ‚‚): ืฉื‘ืจ ืžื•ืœื™ื = 0.78
  • ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™ (COโ‚‚): ืฉื‘ืจ ืžื•ืœื™ื = 0.01

ื›ื“ื™ ืœื—ืฉื‘ ืืช ื”ืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ื›ืœ ื’ื–:

  1. ื—ืžืฆืŸ: PO2=0.21ร—2ย atm=0.42ย atmP_{Oโ‚‚} = 0.21 \times 2 \text{ atm} = 0.42 \text{ atm}
  2. ื—ื ืงืŸ: PN2=0.78ร—2ย atm=1.56ย atmP_{Nโ‚‚} = 0.78 \times 2 \text{ atm} = 1.56 \text{ atm}
  3. ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™: PCO2=0.01ร—2ย atm=0.02ย atmP_{COโ‚‚} = 0.01 \times 2 \text{ atm} = 0.02 \text{ atm}

ื ื•ื›ืœ ืœืืžืช ืืช ื”ื—ื™ืฉื•ื‘ ืฉืœื ื• ืขืœ ื™ื“ื™ ื‘ื“ื™ืงื” ืฉืกื›ื•ื ื›ืœ ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉื•ื•ื” ืœืœื—ืฅ ื”ื›ื•ืœืœ: Ptotal=0.42+1.56+0.02=2.00ย atmP_{total} = 0.42 + 1.56 + 0.02 = 2.00 \text{ atm}

ื”ืžืจื•ืช ื™ื—ื™ื“ื•ืช ืœื—ืฅ

ื”ืžื—ืฉื‘ื•ืŸ ืฉืœื ื• ืชื•ืžืš ื‘ืžืกืคืจ ื™ื—ื™ื“ื•ืช ืœื—ืฅ. ื”ื ื” ื’ื•ืจืžื™ ื”ื”ืžืจื” ื‘ืฉื™ืžื•ืฉ:

  • 1 ืื˜ืžื•ืกืคื™ืจื” (atm) = 101.325 ืงื™ืœื•ืคืกืงืœื™ื (kPa)
  • 1 ืื˜ืžื•ืกืคื™ืจื” (atm) = 760 ืžื™ืœื™ืžื˜ืจื™ื ืฉืœ ื›ืกืคื™ืช (mmHg)

ื‘ืขืช ื”ืžืจื” ื‘ื™ืŸ ื™ื—ื™ื“ื•ืช, ื”ืžื—ืฉื‘ื•ืŸ ืžืฉืชืžืฉ ื‘ืงืฉืจื™ื ืืœื• ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช ืœืœื ืงืฉืจ ืœืžืขืจื›ืช ื”ื™ื—ื™ื“ื•ืช ื”ืžื•ืขื“ืคืช ืขืœื™ืš.

ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืžื—ืฉื‘ื•ืŸ ืœื—ืฅ ื—ืœืงื™ ื–ื” - ืžื“ืจื™ืš ืฉืœื‘ ืื—ืจ ืฉืœื‘

ื”ืžื—ืฉื‘ื•ืŸ ืฉืœื ื• ืฉืœ ืœื—ืฅ ื—ืœืงื™ ืžื™ื•ืขื“ ืœืฉื™ืžื•ืฉ ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ ืขื ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช. ืขืงื•ื‘ ืื—ืจื™ ืžื“ืจื™ืš ื–ื” ืฉืœื‘ ืื—ืจ ืฉืœื‘ ื›ื“ื™ ืœื—ืฉื‘ ืœื—ืฅ ื—ืœืงื™ ืขื‘ื•ืจ ื›ืœ ืชืขืจื•ื‘ืช ื’ื–ื™ื:

  1. ื”ื–ืŸ ืืช ื”ืœื—ืฅ ื”ื›ื•ืœืœ ืฉืœ ืชืขืจื•ื‘ืช ื”ื’ื–ื™ื ืฉืœืš ื‘ื™ื—ื™ื“ื•ืช ื”ืžื•ืขื“ืคื•ืช ืขืœื™ืš (atm, kPa, ืื• mmHg).

  2. ื‘ื—ืจ ืืช ื™ื—ื™ื“ืช ื”ืœื—ืฅ ืžืชื•ืš ื”ืชืคืจื™ื˜ ื”ื ืคืชื— (ื‘ืจื™ืจืช ื”ืžื—ื“ืœ ื”ื™ื ืื˜ืžื•ืกืคืจื•ืช).

  3. ื”ื•ืกืฃ ืจื›ื™ื‘ื™ ื’ื–ื™ื ืขืœ ื™ื“ื™ ื”ื–ื ืช:

    • ืฉื ื›ืœ ืจื›ื™ื‘ ื’ื– (ืœืžืฉืœ, "ื—ืžืฆืŸ", "ื—ื ืงืŸ")
    • ืฉื‘ืจ ื”ืžื•ืœื™ื ืฉืœ ื›ืœ ืจื›ื™ื‘ (ืขืจืš ื‘ื™ืŸ 0 ืœ-1)
  4. ื”ื•ืกืฃ ืจื›ื™ื‘ื™ื ื ื•ืกืคื™ื ืื ื™ืฉ ืฆื•ืจืš ืขืœ ื™ื“ื™ ืœื—ื™ืฆื” ืขืœ ื›ืคืชื•ืจ "ื”ื•ืกืฃ ืจื›ื™ื‘".

  5. ืœื—ืฅ ืขืœ "ื—ืฉื‘" ื›ื“ื™ ืœื—ืฉื‘ ืืช ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื.

  6. ืฆืคื” ื‘ืชื•ืฆืื•ืช ื‘ื—ืœืง ื”ืชื•ืฆืื•ืช, ืฉืžืฆื™ื’:

    • ื˜ื‘ืœื” ื”ืžืจืื” ืืช ืฉื ื›ืœ ืจื›ื™ื‘, ืฉื‘ืจ ื”ืžื•ืœื™ื ื•ืœื—ืฅ ื—ืœืงื™ ืžื—ื•ืฉื‘
    • ืชืจืฉื™ื ื—ื–ื•ืชื™ ื”ืžืžื—ื™ืฉ ืืช ื”ืคืฆืช ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื
  7. ื”ืขืชืง ืชื•ืฆืื•ืช ืœืœื•ื— ืฉืœืš ืขืœ ื™ื“ื™ ืœื—ื™ืฆื” ืขืœ ื›ืคืชื•ืจ "ื”ืขืชืง ืชื•ืฆืื•ืช" ืœืฉื™ืžื•ืฉ ื‘ื“ื•ื—ื•ืช ืื• ืœื ื™ืชื•ื— ื ื•ืกืฃ.

ืื™ืžื•ืช ืงืœื˜

ื”ืžื—ืฉื‘ื•ืŸ ืžื‘ืฆืข ืžืกืคืจ ื‘ื“ื™ืงื•ืช ืื™ืžื•ืช ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช:

  • ื”ืœื—ืฅ ื”ื›ื•ืœืœ ื—ื™ื™ื‘ ืœื”ื™ื•ืช ื’ื“ื•ืœ ืžืืคืก
  • ื›ืœ ืฉื‘ืจื™ ื”ืžื•ืœื™ื ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ื‘ื™ืŸ 0 ืœ-1
  • ืกื›ื•ื ื›ืœ ืฉื‘ืจื™ ื”ืžื•ืœื™ื ืฆืจื™ืš ืœื”ื™ื•ืช ืฉื•ื•ื” ืœ-1 (ื‘ืชื•ืš ืกื•ื‘ืœื ื•ืช ืงื˜ื ื” ืœื˜ืขื•ื™ื•ืช ืขื™ื’ื•ืœ)
  • ืœื›ืœ ืจื›ื™ื‘ ื’ื– ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืฉื

ืื ืžืชืจื—ืฉื•ืช ืฉื’ื™ืื•ืช ืื™ืžื•ืช ื›ืœืฉื”ืŸ, ื”ืžื—ืฉื‘ื•ืŸ ื™ืฆื™ื’ ื”ื•ื“ืขืช ืฉื’ื™ืื” ืกืคืฆื™ืคื™ืช ื›ื“ื™ ืœืขื–ื•ืจ ืœืš ืœืชืงืŸ ืืช ื”ืงืœื˜.

ื™ื™ืฉื•ืžื™ื ื•ืžืงืจื™ ืฉื™ืžื•ืฉ ืฉืœ ืžื—ืฉื‘ื•ืŸ ืœื—ืฅ ื—ืœืงื™

ื—ื™ืฉื•ื‘ื™ ืœื—ืฅ ื—ืœืงื™ ื”ื ื—ื™ื•ื ื™ื™ื ื‘ืชื—ื•ืžื™ื ืžื“ืขื™ื™ื ื•ื”ื ื“ืกื™ื™ื ืจื‘ื™ื. ืžื“ืจื™ืš ื–ื” ืžืงื™ืฃ ื™ื™ืฉื•ืžื™ื ืžืจื›ื–ื™ื™ื ืฉื‘ื”ื ื”ืžื—ืฉื‘ื•ืŸ ืฉืœื ื• proves invaluable:

ื›ื™ืžื™ื” ื•ื”ื ื“ืกื” ื›ื™ืžื™ืช

  1. ืชื’ื•ื‘ื•ืช ื‘ืฉืœื‘ ื’ื–: ื”ื‘ื ืช ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ื”ื™ื ืงืจื™ื˜ื™ืช ืœื ื™ืชื•ื— ืงื™ื ื˜ื™ืงื” ืฉืœ ืชื’ื•ื‘ื•ืช ื•ืื™ื–ื•ืŸ ื‘ืชื’ื•ื‘ื•ืช ื›ื™ืžื™ื•ืช ื‘ืฉืœื‘ ื’ื–. ืงืฆื‘ ืจื‘ื•ืช ืžื”ืชื’ื•ื‘ื•ืช ืชืœื•ื™ ื™ืฉื™ืจื•ืช ื‘ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื”ืžื’ื™ื‘ื™ื.

  2. ืื™ื–ื•ืŸ ืื“ื™ื-ื ื•ื–ืœื™ื: ืœื—ืฆื™ื ื—ืœืงื™ื™ื ืขื•ื–ืจื™ื ืœืงื‘ื•ืข ื›ื™ืฆื“ ื’ื–ื™ื ืžืชืžื•ืกืกื™ื ื‘ื ื•ื–ืœื™ื ื•ื›ื™ืฆื“ ื ื•ื–ืœื™ื ืžืชืื“ื™ื, ื“ื‘ืจ ืฉื”ื•ื ื—ื™ื•ื ื™ ืœืขื™ืฆื•ื‘ ืขืžื•ื“ื™ ื–ื™ืงื•ืง ื•ืชื”ืœื™ื›ื™ ื”ืคืจื“ื” ืื—ืจื™ื.

  3. ื›ืจื•ืžื˜ื•ื’ืจืคื™ื” ื‘ื’ื–: ื˜ื›ื ื™ืงืช ื ื™ืชื•ื— ื–ื• ืžืชื‘ืกืกืช ืขืœ ืขืงืจื•ื ื•ืช ื”ืœื—ืฅ ื”ื—ืœืงื™ ื›ื“ื™ ืœื”ืคืจื™ื“ ื•ืœื–ื”ื•ืช ืชืจื›ื•ื‘ื•ืช ื‘ืชืขืจื•ื‘ื•ืช ืžื•ืจื›ื‘ื•ืช.

ื™ื™ืฉื•ืžื™ื ืจืคื•ืื™ื™ื ื•ืคื™ื–ื™ื•ืœื•ื’ื™ื™ื

  1. ืคื™ื–ื™ื•ืœื•ื’ื™ื” ื ืฉื™ืžืชื™ืช: ื—ื™ืœื•ืคื™ ื—ืžืฆืŸ ื•ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™ ื‘ืจื™ืื•ืช ื ืฉืœื˜ื™ื ืขืœ ื™ื“ื™ ื’ืจื“ื™ืื ื˜ื™ื ืฉืœ ืœื—ืฆื™ื ื—ืœืงื™ื™ื. ืื ืฉื™ ืžืงืฆื•ืข ืจืคื•ืื™ื™ื ืžืฉืชืžืฉื™ื ื‘ื—ื™ืฉื•ื‘ื™ ืœื—ืฆื™ื ื—ืœืงื™ื™ื ื›ื“ื™ ืœื”ื‘ื™ืŸ ื•ืœื˜ืคืœ ื‘ืžืฆื‘ื™ื ื ืฉื™ืžืชื™ื™ื.

  2. ืื ืกื˜ื–ื™ื•ืœื•ื’ื™ื”: ืื ืกื˜ื–ื™ื•ืœื•ื’ื™ื ื—ื™ื™ื‘ื™ื ืœืฉืœื•ื˜ ื‘ืงืคื™ื“ื” ื‘ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื’ื–ื™ ื”ืจื“ืžื” ื›ื“ื™ ืœืฉืžื•ืจ ืขืœ ืจืžื•ืช ื”ืจื“ืžื” ื ื›ื•ื ื•ืช ืชื•ืš ื”ื‘ื˜ื—ืช ื‘ื˜ื™ื—ื•ืช ื”ืžื˜ื•ืคืœ.

  3. ืจืคื•ืื” ื”ื™ืคืจื‘ืจื™ืช: ื˜ื™ืคื•ืœื™ื ื‘ื—ื“ืจื™ื ื”ื™ืคืจื‘ืจื™ื™ื ื“ื•ืจืฉื™ื ืฉืœื™ื˜ื” ืžื“ื•ื™ืงืช ื‘ืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ื—ืžืฆืŸ ื›ื“ื™ ืœื˜ืคืœ ื‘ืžืฆื‘ื™ื ื›ืžื• ืžื—ืœืช ื“ืงื•ืžืคืจืกื™ื” ื•ื”ืจืขืœืช ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™.

ืžื“ืข ืกื‘ื™ื‘ืชื™

  1. ื›ื™ืžื™ื” ืื˜ืžื•ืกืคืจื™ืช: ื”ื‘ื ืช ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื’ื–ื™ ื—ืžืžื” ื•ืžื–ื”ืžื™ื ืขื•ื–ืจืช ืœืžื“ืขื ื™ื ืœื“ื’ื ืฉื™ื ื•ื™ื™ ืืงืœื™ื ื•ืื™ื›ื•ืช ื”ืื•ื•ื™ืจ.

  2. ืื™ื›ื•ืช ืžื™ื: ืชื›ื•ืœืช ื”ื—ืžืฆืŸ ื”ืžื•ืžืก ื‘ื’ื•ืคื™ ืžื™ื, ืฉื”ื™ื ืงืจื™ื˜ื™ืช ืœื—ื™ื™ื ื™ืžื™ื™ื, ืงืฉื•ืจื” ืœืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ื—ืžืฆืŸ ื‘ืื˜ืžื•ืกืคื™ืจื”.

  3. ื ื™ืชื•ื— ื’ื–ื™ ืงืจืงืข: ืžื”ื ื“ืกื™ ืกื‘ื™ื‘ื” ืžื•ื“ื“ื™ื ืœื—ืฆื™ื ื—ืœืงื™ื™ื ืฉืœ ื’ื–ื™ื ื‘ืื“ืžื” ื›ื“ื™ ืœื’ืœื•ืช ื–ื™ื”ื•ื ื•ืœื ื˜ืจ ืžืืžืฆื™ ืฉื™ืงื•ื.

ื™ื™ืฉื•ืžื™ื ืชืขืฉื™ื™ืชื™ื™ื

  1. ืชื”ืœื™ื›ื™ ื”ืคืจื“ืช ื’ื–ื™ื: ืชืขืฉื™ื•ืช ืžืฉืชืžืฉื•ืช ื‘ืขืงืจื•ื ื•ืช ื”ืœื—ืฅ ื”ื—ืœืงื™ ื‘ืชื”ืœื™ื›ื™ื ื›ืžื• ืกืคื™ื—ื” ื‘ืžื—ื–ื•ืจ ืœื—ืฅ ื›ื“ื™ ืœื”ืคืจื™ื“ ืชืขืจื•ื‘ื•ืช ื’ื–ื™ื.

  2. ื‘ืงืจืช ื‘ืขื™ืจื”: ืื•ืคื˜ื™ืžื™ื–ืฆื™ื” ืฉืœ ืชืขืจื•ื‘ื•ืช ื“ืœืง-ืื•ื•ื™ืจ ื‘ืžืขืจื›ื•ืช ื‘ืขื™ืจื” ื“ื•ืจืฉืช ื”ื‘ื ื” ืฉืœ ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ืฉืœ ื—ืžืฆืŸ ื•ื’ื–ื™ ื“ืœืง.

  3. ืืจื™ื–ืช ืžื–ื•ืŸ: ืืจื™ื–ืช ืื˜ืžื•ืกืคื™ืจื” ืžื•ืชืืžืช ืžืฉืชืžืฉืช ื‘ืœื—ืฆื™ื ื—ืœืงื™ื™ื ืกืคืฆื™ืคื™ื™ื ืฉืœ ื’ื–ื™ื ื›ืžื• ื—ื ืงืŸ, ื—ืžืฆืŸ ื•ืคื—ืžืŸ ื“ื•-ื—ืžืฆื ื™ ื›ื“ื™ ืœื”ืืจื™ืš ืืช ื—ื™ื™ ื”ืžื“ืฃ ืฉืœ ื”ืžื–ื•ืŸ.

ืืงื“ืžื™ื” ื•ืžื—ืงืจ

  1. ืœื™ืžื•ื“ื™ ื—ื•ืงื™ ื’ื–: ื—ื™ืฉื•ื‘ื™ ืœื—ืฅ ื—ืœืงื™ ื”ื ื™ืกื•ื“ื™ื™ื ื‘ื”ื•ืจืื” ื•ื‘ืžื—ืงืจ ืฉืœ ื”ืชื ื”ื’ื•ืช ื’ื–ื™ื.

  2. ืžื“ืข ื—ื•ืžืจื™ื: ืคื™ืชื•ื— ื—ื™ื™ืฉื ื™ ื’ื–ื™ื, ืžืžื‘ืจื ื•ืช ื•ื—ื•ืžืจื™ื ืคื•ืจื™ื™ื ื›ื•ืœืœ ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืฉื™ืงื•ืœื™ื ืฉืœ ืœื—ืฅ ื—ืœืงื™.

  3. ืžื“ืข ืคืœื ื˜ืจื™: ื”ื‘ื ืช ื”ืจื›ื‘ ื”ืื˜ืžื•ืกืคื™ืจื•ืช ื”ืคืœื ื˜ืจื™ื•ืช ืžืชื‘ืกืกืช ืขืœ ื ื™ืชื•ื— ืœื—ืฆื™ื ื—ืœืงื™ื™ื.

ื—ืœื•ืคื•ืช ืœื—ื™ืฉื•ื‘ื™ ืœื—ืฅ ื—ืœืงื™

ื‘ืขื•ื“ ืฉื—ื•ืง ื“ืœื˜ื•ืŸ ืžืกืคืง ื’ื™ืฉื” ืคืฉื•ื˜ื” ืœืชืขืจื•ื‘ื•ืช ื’ื– ืื™ื“ื™ืืœื™ื•ืช, ื™ืฉื ืŸ ืฉื™ื˜ื•ืช ื—ืœื•ืคื™ื•ืช ืœืžืฆื‘ื™ื ืกืคืฆื™ืคื™ื™ื:

  1. ืคื•ื’ืืฆ'ื™: ืขื‘ื•ืจ ืชืขืจื•ื‘ื•ืช ื’ื–ื™ื ืœื ืื™ื“ื™ืืœื™ื•ืช ื‘ืœื—ืฆื™ื ื’ื‘ื•ื”ื™ื, ืคื•ื’ืืฆ'ื™ (ืœื—ืฅ "ืืคืงื˜ื™ื‘ื™") ืžืฉืžืฉ ืœืขื™ืชื™ื ื‘ืžืงื•ื ืœื—ืฅ ื—ืœืงื™. ืคื•ื’ืืฆ'ื™ ื›ื•ืœืœ ื”ืชื ื”ื’ื•ืช ืœื ืื™ื“ื™ืืœื™ืช ื“ืจืš ืžืงื“ืžื™ ืคืขื™ืœื•ืช.

  2. ื—ื•ืง ื”ื ืจื™: ืขื‘ื•ืจ ื’ื–ื™ื ื”ืžื•ืžืกื™ื ื‘ื ื•ื–ืœื™ื, ื—ื•ืง ื”ื ืจื™ ืžืงืฉืจ ื‘ื™ืŸ ื”ืœื—ืฅ ื”ื—ืœืงื™ ืฉืœ ื’ื– ืžืขืœ ื ื•ื–ืœ ืœืจื™ื›ื•ื–ื• ื‘ืฉืœื‘ ื”ื ื•ื–ืœื™.

  3. ื—ื•ืง ืจืื•ืœื˜: ื—ื•ืง ื–ื” ืžืชืืจ ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืœื—ืฅ ื”ืื“ื™ื ืฉืœ ืจื›ื™ื‘ื™ื ื•ืฉื‘ืจื™ ื”ืžื•ืœื™ื ืฉืœื”ื ื‘ืชืขืจื•ื‘ื•ืช ื ื•ื–ืœ ืื™ื“ื™ืืœื™ื•ืช.

  4. ืžื•ื“ืœื™ื ืฉืœ ืžืฉื•ื•ืืช ืžืฆื‘: ืžื•ื“ืœื™ื ืžืชืงื“ืžื™ื ื›ืžื• ืžืฉื•ื•ืืช ื•ืืŸ ื“ืจ ื•ืืœืก, ืคื ื’-ืจื•ื‘ื™ื ืกื•ืŸ ืื• ืžืฉื•ื•ืื•ืช ืกื•ืื‘ื”-ืจื“ืœื™ืš-ืงื•ื•ืื ื’ ื™ื›ื•ืœื™ื ืœืกืคืง ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช ื™ื•ืชืจ ืขื‘ื•ืจ ื’ื–ื™ื ืืžื™ืชื™ื™ื ื‘ืœื—ืฆื™ื ื’ื‘ื•ื”ื™ื ืื• ื‘ื˜ืžืคืจื˜ื•ืจื•ืช ื ืžื•ื›ื•ืช.

ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืžื•ืฉื’ ื”ืœื—ืฅ ื”ื—ืœืงื™

ืžื•ืฉื’ ื”ืœื—ืฅ ื”ื—ืœืงื™ ื™ืฉ ื”ื™ืกื˜ื•ืจื™ื” ืžื“ืขื™ืช ืขืฉื™ืจื” ื”ืžืชื—ื™ืœื” ื‘ืชื—ื™ืœืช ื”ืžืื” ื”-19:

ืชืจื•ืžืชื• ืฉืœ ื’'ื•ืŸ ื“ืœื˜ื•ืŸ

ื’'ื•ืŸ ื“ืœื˜ื•ืŸ (1766-1844), ื›ื™ืžืื™, ืคื™ื–ื™ืงืื™ ื•ืžื˜ืื•ืจื•ืœื•ื’ ืื ื’ืœื™, ื”ื™ื” ื”ืจืืฉื•ืŸ ืœื ืกื— ืืช ื—ื•ืง ื”ืœื—ืฆื™ื ื”ื—ืœืงื™ื™ื ื‘ืฉื ืช 1801. ืขื‘ื•ื“ืชื• ืฉืœ ื“ืœื˜ื•ืŸ ืขืœ ื’ื–ื™ื ื”ื™ื™ืชื” ื—ืœืง ืžื”ืชื™ืื•ืจื™ื” ื”ืื˜ื•ืžื™ืช ื”ืจื—ื‘ื” ืฉืœื•, ืื—ืช ืžื”ื”ืชืงื“ืžื•ืช ื”ืžื“ืขื™ื•ืช ื”ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืฉืœ ื–ืžื ื•. ื—ืงื™ืจื•ืชื™ื• ื”ื—ืœื• ืขื ืžื—ืงืจื™ื ืขืœ ื’ื–ื™ื ืžืขื•ืจื‘ื™ื ื‘ืื˜ืžื•ืกืคื™ืจื”, ืžื” ืฉื”ื•ื‘ื™ืœ ืื•ืชื• ืœื”ืฆื™ืข ื›ื™ ื”ืœื—ืฅ ืฉืžืคืขื™ืœ ื›ืœ ื’ื– ื‘ืชืขืจื•ื‘ืช ื”ื•ื ืขืฆืžืื™ ืžื”ื’ื–ื™ื ื”ืื—ืจื™ื ื”ื ื•ื›ื—ื™ื.

ื“ืœื˜ื•ืŸ ืคืจืกื ืืช ืžืžืฆืื™ื• ื‘ืกืคืจื• ืžืฉื ืช 1808 "ืžืขืจื›ืช ื—ื“ืฉื” ืฉืœ ืคื™ืœื•ืกื•ืคื™ื” ื›ื™ืžื™ืช", ืฉื‘ื• ื”ื•ื ื ื™ืกื— ืืช ืžื” ืฉืื ื• ืžื›ื ื™ื ื›ื™ื•ื ื—ื•ืง ื“ืœื˜ื•ืŸ. ืขื‘ื•ื“ืชื• ื”ื™ื™ืชื” ืžื”ืคื›ื ื™ืช ืžืฉื•ื ืฉื”ื™ื ืกื™ืคืงื” ืžืกื’ืจืช ื›ืžื•ืชื™ืช ืœื”ื‘ื ืช ืชืขืจื•ื‘ื•ืช ื’ื–ื™ื ื‘ื–ืžืŸ ืฉื”ื˜ื‘ืข ืฉืœ ื”ื’ื–ื™ื ืขื“ื™ื™ืŸ ื”ื™ื” ืœื ืžื•ื‘ืŸ ื”ื™ื˜ื‘.

ื”ืชืคืชื—ื•ืช ื—ื•ืงื™ ื”ื’ื–

ื—ื•ืง ื“ืœื˜ื•ืŸ ื”ืฉืœื™ื ื—ื•ืงื™ื ืื—ืจื™ื ืฉืœ ื’ื–ื™ื ืฉื”ืชืคืชื—ื• ื‘ืื•ืชื” ืชืงื•ืคื”:

  • ื—ื•ืง ื‘ื•ื™ืืœ (1662): ืชื™ืืจ ืืช ื”ืงืฉืจ ื”ื”ืคื•ืš ื‘ื™ืŸ ืœื—ืฅ ื”ื’ื– ืœื ืคื—
  • ื—ื•ืง ืฉืืจืœ (1787): ืงื‘ืข ืืช ื”ืงืฉืจ ื”ื™ืฉื™ืจ ื‘ื™ืŸ ื ืคื— ื”ื’ื– ืœื˜ืžืคืจื˜ื•ืจื”
  • ื—ื•ืง ืื‘ื•ื’ื“ืจื• (1811): ื”ืฆื™ืข ื›ื™ ื ืคื—ื™ื ืฉื•ื•ื™ื ืฉืœ ื’ื–ื™ื ืžื›ื™ืœื™ื ืžืกืคืจื™ื ืฉื•ื•ื™ื ืฉืœ ืžื•ืœืงื•ืœื•ืช

ื™ื—ื“, ื—ื•ืงื™ื ืืœื• ื”ื•ื‘ื™ืœื• ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœืคื™ืชื•ื— ื”ื—ื•ืง ื”ืื™ื“ื™ืืœื™ ืฉืœ ื”ื’ื– (PV = nRT) ื‘ืืžืฆืข ื”ืžืื” ื”-19, ื•ื™ืฆืจื• ืžืกื’ืจืช ืžืงื™ืคื” ืœื”ืชื ื”ื’ื•ืช ื’ื–ื™ื.

ื”ืชืคืชื—ื•ื™ื•ืช ืžื•ื“ืจื ื™ื•ืช

ื‘ืžืื” ื”-20, ืžื“ืขื ื™ื ืคื™ืชื—ื• ืžื•ื“ืœื™ื ืžืชืงื“ืžื™ื ื™ื•ืชืจ ื›ื“ื™ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ื”ืชื ื”ื’ื•ืช ื’ื–ื™ื ืœื ืื™ื“ื™ืืœื™ืช:

  1. ืžืฉื•ื•ืืช ื•ืืŸ ื“ืจ ื•ืืœืก (1873): ื™ื•ื”ื ืก ื•ืืŸ ื“ืจ ื•ืืœืก ืฉื™ื ื” ืืช ื”ื—ื•ืง ื”ืื™ื“ื™ืืœื™ ื›ื“ื™ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืืช ื ืคื— ื”ืžื•ืœืงื•ืœื•ืช ื•ื›ื•ื—ื•ืช ื‘ื™ืŸ-ืžื•ืœืงื•ืœืจื™ื™ื.

  2. ืžืฉื•ื•ืืช ื•ื™ืจื™ืืœ: ืกื“ืจืช ื”ื”ืจื—ื‘ื” ื”ื–ื• ืžืกืคืงืช ืงื™ืจื•ื‘ื™ื ืžื“ื•ื™ืงื™ื ื™ื•ืชืจ ืœื”ืชื ื”ื’ื•ืช ื’ื–ื™ื ืืžื™ืชื™ื™ื.

  3. ืžื›ื ื™ืงืช ืกื˜ื˜ื™ืกื˜ื™ืช: ื’ื™ืฉื•ืช ืชื™ืื•ืจื˜ื™ื•ืช ืžื•ื“ืจื ื™ื•ืช ืžืฉืชืžืฉื•ืช ื‘ืžื›ื ื™ืงืช ืกื˜ื˜ื™ืกื˜ื™ืช ื›ื“ื™ ืœื”ืคื™ืง ื—ื•ืงื™ื ื’ื–ื™ื™ื ืžืžืืคื™ื™ื ื™ื ืžื•ืœืงื•ืœืจื™ื™ื ื‘ืกื™ืกื™ื™ื.

ื”ื™ื•ื, ื—ื™ืฉื•ื‘ื™ ืœื—ืฅ ื—ืœืงื™ ื ืฉืืจื™ื ื—ื™ื•ื ื™ื™ื ื‘ืชื—ื•ืžื™ื ืจื‘ื™ื, ืžืชื”ืœื™ื›ื™ื ืชืขืฉื™ื™ืชื™ื™ื ื•ืขื“ ื˜ื™ืคื•ืœื™ื ืจืคื•ืื™ื™ื, ืขื ื›ืœื™ื ื—ื™ืฉื•ื‘ื™ื™ื ืฉื”ื•ืคื›ื™ื ืืช ื”ื—ื™ืฉื•ื‘ื™ื ื”ืœืœื• ืœื ื’ื™ืฉื™ื ื™ื•ืชืจ ืžืื™ ืคืขื.

ื“ื•ื’ืžืื•ืช ืงื•ื“

ื”ื ื” ื“ื•ื’ืžืื•ืช ื›ื™ืฆื“ ืœื—ืฉื‘ ืœื—ืฆื™ื ื—ืœืงื™ื™ื ื‘ืฉืคื•ืช ืชื›ื ื•ืช ืฉื•ื ื•ืช:

1def calculate_partial_pressures(total_pressure, components):
2    """
3    Calculate partial pressures for gas components in a mixture.
4    
5    Args:
6        total_pressure (float): Total pressure of the gas mixture
7        components (list): List of dictionaries with 'name' and 'mole_fraction' keys
8        
9    Returns:
10        list: Components with calculated partial pressures
11    """
12    # Validate mole fractions
13    total_fraction = sum(comp['mole_fraction'] for comp in components)
14    if abs(total_fraction - 1.0) > 0.001:
15        raise ValueError(f"Sum of mole fractions ({total_fraction}) must equal 1.0")
16    
17    # Calculate partial pressures
18    for component in components:
19        component['partial_pressure'] = component['mole_fraction'] * total_pressure
20        
21    return components
22
23# Example usage
24gas_mixture = [
25    {'name': 'Oxygen', 'mole_fraction': 0.21},
26    {'name': 'Nitrogen', 'mole_fraction': 0.78},
27    {'name': 'Carbon Dioxide', 'mole_fraction': 0.01}
28]
29
30try:
31    results = calculate_partial_pressures(1.0, gas_mixture)
32    for gas in results:
33        print(f"{gas['name']}: {gas['partial_pressure']:.4f} atm")
34except ValueError as e:
35    print(f"Error: {e}")
36
function calculatePartialPressures(totalPressure, components) { // Validate input if (totalPressure <= 0) { throw new Error("Total pressure must be greater than zero"); } // Calculate sum of mole fractions const totalFraction = components.reduce((sum, component) => sum + component.moleFraction, 0);
๐Ÿ”—

ื›ืœื™ื ืงืฉื•ืจื™ื

ื’ืœื” ืขื•ื“ ื›ืœื™ื ืฉืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™ื™ื ืขื‘ื•ืจ ื–ืจื™ืžืช ื”ืขื‘ื•ื“ื” ืฉืœืš

ืžื—ืฉื‘ื•ืŸ ืขืจืš pH: ื”ืžืจืช ืจื™ื›ื•ื– ื™ื•ื ื™ ืžื™ืžืŸ ืœ-pH

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”

ืžื—ืฉื‘ื•ืŸ ื ืคื— ื—ื•ืจื™ื: ืžื“ื•ื“ ื ืคื—ื™ ื—ืคื™ืจื•ืช ืฆื™ืœื™ื ื“ืจื™ื•ืช

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”

ืžื—ืฉื‘ื•ืŸ ืื•ื‘ื“ืŸ ื—ื•ื: ื”ืขืจื›ืช ื™ืขื™ืœื•ืช ืชืจืžื™ืช ืฉืœ ื‘ื ื™ื™ื ื™ื

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”

ืžื—ืฉื‘ื•ืŸ ืœื—ืฅ ืื“ื™ื ืฉืœ ื—ื•ืง ืจืื•ืœื˜ ืœื›ื™ืžื™ื” ืฉืœ ืคืชืจื•ื ื•ืช

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”

ืžื—ืฉื‘ื•ืŸ ืคื•ื˜ื ืฆื™ืืœ ืžื™ื: ื ื™ืชื•ื— ืคื•ื˜ื ืฆื™ืืœ ืžื•ืžืก ื•ืœื—ืฅ

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”

ืžื—ืฉื‘ื•ืŸ ื—ื™ืฉื•ื‘ ืฆื‘ืข: ื›ืžื” ืฆื‘ืข ืืชื” ืฆืจื™ืš?

ื ืกื” ืืช ื”ื›ืœื™ ื”ื–ื”