ప్రామాణిక వ్యత్యాసం సూచిక గణనాకుడు
మీ పరీక్ష ఫలితాల ఖచ్చితత్వాన్ని అంచనా వేయడానికి ప్రామాణిక వ్యత్యాసం సూచిక (SDI)ని లెక్కించండి.
ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಇಂಡೆಕ್ಸ್ (SDI) ಕ್ಯಾಲ್ಕುಲೇಟರ್
ಪರಿಚಯ
ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಇಂಡೆಕ್ಸ್ (SDI) ಒಂದು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ಸಾಧನವಾಗಿದೆ, ಇದು ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶವನ್ನು ನಿಯಂತ್ರಣ ಅಥವಾ ಸ್ನೇಹಿತ ಗುಂಪಿನ ಅರ್ಥದ ವಿರುದ್ಧ ಶುದ್ಧತೆ ಮತ್ತು ನಿಖರತೆಯನ್ನು ಅಂದಾಜಿಸಲು ಬಳಸುತ್ತದೆ. ಇದು ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶವು ನಿಯಂತ್ರಣ ಅರ್ಥದಿಂದ ಎಷ್ಟು ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ಗಳ ಅಂತರದಲ್ಲಿ ಇದೆ ಎಂಬುದನ್ನು ಪ್ರಮಾಣಿತಗೊಳಿಸುತ್ತದೆ, ಇದು ಪ್ರಯೋಗಾಲಯದ ಪರಿಸರದಲ್ಲಿ ಮತ್ತು ಇತರ ಪರೀಕ್ಷಾ ಪರಿಸರದಲ್ಲಿ ವಿಶ್ಲೇಷಣಾ ವಿಧಾನಗಳ ಕಾರ್ಯಕ್ಷಮತೆಯ ಬಗ್ಗೆ ಅಮೂಲ್ಯವಾದ ಮಾಹಿತಿಯನ್ನು ಒದಗಿಸುತ್ತದೆ.
ಸೂತ್ರ
SDI ಅನ್ನು ಕೆಳಗಿನ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಲೆಕ್ಕಹಾಕಲಾಗುತ್ತದೆ:
ಎಲ್ಲಿ:
- ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶ: ಮೌಲ್ಯವನ್ನು ಲೆಕ್ಕಹಾಕಲಾಗಿದೆ.
- ನಿಯಂತ್ರಣ ಅರ್ಥ: ನಿಯಂತ್ರಣ ಮಾದರಿಗಳಿಂದ ಅಥವಾ ಸ್ನೇಹಿತ ಗುಂಪಿನ ಡೇಟಾದಿಂದ ಪಡೆದ ಸರಾಸರಿ ಮೌಲ್ಯ.
- ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್: ನಿಯಂತ್ರಣ ಡೇಟಾದಲ್ಲಿ ವ್ಯತ್ಯಾಸ ಅಥವಾ ಬದಲಾವಣೆಯ ಅಳತೆಯು.
ಎಡ್ಜ್ ಕೇಸ್ಗಳು
- ಶೂನ್ಯ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್: ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಶೂನ್ಯವಾದಾಗ, SDI ಅರ್ಥವಿಲ್ಲದಾಗಿರುತ್ತದೆ ಏಕೆಂದರೆ ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವುದು ಸಾಧ್ಯವಿಲ್ಲ. ಇದು ನಿಯಂತ್ರಣ ಡೇಟಾದಲ್ಲಿ ವ್ಯತ್ಯಾಸವಿಲ್ಲ ಅಥವಾ ಡೇಟಾ ಸಂಗ್ರಹಣೆಯಲ್ಲಿ ದೋಷವಿದೆ ಎಂದು ಸೂಚಿಸಬಹುದು.
- ಋಣಾತ್ಮಕ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್: ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಋಣಾತ್ಮಕವಾಗುವುದಿಲ್ಲ. ಋಣಾತ್ಮಕ ಮೌಲ್ಯವು ಲೆಕ್ಕಹಾಕುವಿಕೆಯಲ್ಲಿ ದೋಷವಿದೆ ಎಂದು ಸೂಚಿಸುತ್ತದೆ.
ಲೆಕ್ಕಹಾಕುವುದು
SDI ಅನ್ನು ಲೆಕ್ಕಹಾಕಲು:
- ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶವನ್ನು ಪಡೆಯಿರಿ: ಪರೀಕ್ಷಾ ಮಾದರಿಯಿಂದ ಫಲಿತಾಂಶವನ್ನು ಅಳೆಯಿರಿ ಅಥವಾ ಪಡೆಯಿರಿ.
- ನಿಯಂತ್ರಣ ಅರ್ಥವನ್ನು ನಿರ್ಧಾರ ಮಾಡಿ: ನಿಯಂತ್ರಣ ಮಾದರಿಗಳಿಂದ ಸರಾಸರಿ ಲೆಕ್ಕಹಾಕಿ ಅಥವಾ ಸ್ನೇಹಿತ ಗುಂಪಿನ ಡೇಟಾದಿಂದ ಪಡೆಯಿರಿ.
- ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಅನ್ನು ಲೆಕ್ಕಹಾಕಿ: ನಿಯಂತ್ರಣ ಡೇಟಾ ಸೆಟ್ನ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಅನ್ನು ಲೆಕ್ಕಹಾಕಿ.
- SDI ಸೂತ್ರವನ್ನು ಅನ್ವಯಿಸಿ: SDI ಸೂತ್ರದಲ್ಲಿ ಮೌಲ್ಯಗಳನ್ನು ಬದಲಾಯಿಸಿ.
ಉದಾಹರಣೆಯ ಲೆಕ್ಕಹಾಕುವುದು
ಅಂದುಕೊಳ್ಳಿ:
- ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶ = 102
- ನಿಯಂತ್ರಣ ಅರ್ಥ = 100
- ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ = 2
ಲೆಕ್ಕಹಾಕುವುದು:
SDI 1.0 ಅನ್ನು ಸೂಚಿಸುತ್ತದೆ, ಇದು ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶವು ನಿಯಂತ್ರಣ ಅರ್ಥಕ್ಕಿಂತ ಒಂದು ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಮೇಲ್ನೋಟವಾಗಿದೆ.
ಫಲಿತಾಂಶಗಳ ವ್ಯಾಖ್ಯಾನ
-
SDI -1 ಮತ್ತು +1 ನಡುವೆ: ಒಪ್ಪಿಗೆಯ ಕಾರ್ಯಕ್ಷಮತೆ.
ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶಗಳು ನಿಯಂತ್ರಣ ಅರ್ಥದ ಒಂದೇ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಒಳಗೆ ಇವೆ, ಇದು ನಿರೀಕ್ಷಿತ ಮೌಲ್ಯಗಳೊಂದಿಗೆ ಉತ್ತಮ ಹೊಂದಾಣಿಕೆಯನ್ನು ಸೂಚಿಸುತ್ತದೆ. ಸಾಮಾನ್ಯವಾಗಿ ಯಾವುದೇ ಕ್ರಮವಿಲ್ಲ.
-
SDI -2 ಮತ್ತು -1 ಅಥವಾ +1 ಮತ್ತು +2 ನಡುವೆ: ಎಚ್ಚರಿಕೆ ಶ್ರೇಣಿಯು.
ಫಲಿತಾಂಶಗಳು ಒಪ್ಪಿಗೆಯಾದರೂ, ಅವುಗಳನ್ನು ಗಮನಿಸಬೇಕು. ಈ ಶ್ರೇಣಿಯು ಸಾಮಾನ್ಯದಿಂದ ಸಂಭವನೀಯ ವ್ಯತ್ಯಾಸವನ್ನು ಸೂಚಿಸುತ್ತದೆ, ಇದು ಗಮನಾರ್ಹವಾಗಿದೆ. ಸಾಧ್ಯವಾದ ಕಾರಣಗಳನ್ನು ಪರಿಶೀಲಿಸಿ ಮತ್ತು ಪುನಃ ಪರೀಕ್ಷಿಸುವುದನ್ನು ಪರಿಗಣಿಸಿ.
-
SDI -2 ಕ್ಕಿಂತ ಕಡಿಮೆ ಅಥವಾ +2 ಕ್ಕಿಂತ ಹೆಚ್ಚು: ಒಪ್ಪಿಗೆಯಲ್ಲದ ಕಾರ್ಯಕ್ಷಮತೆ.
ಸಮಸ್ಯೆಗಳನ್ನು ಗುರುತಿಸಲು ಮತ್ತು ಸರಿಪಡಿಸಲು ತನಿಖೆ ಅಗತ್ಯವಿದೆ. ಈ ಶ್ರೇಣಿಯಲ್ಲಿನ ಫಲಿತಾಂಶಗಳು ನಿರೀಕ್ಷಿತ ಮೌಲ್ಯಗಳಿಂದ ಮಹತ್ವಪೂರ್ಣ ವ್ಯತ್ಯಾಸವನ್ನು ಸೂಚಿಸುತ್ತವೆ ಮತ್ತು ಪರೀಕ್ಷಾ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಅಥವಾ ಸಾಧನದಲ್ಲಿ ವ್ಯವಸ್ಥಿತ ಸಮಸ್ಯೆಗಳನ್ನು ಸೂಚಿಸುತ್ತವೆ. ತಕ್ಷಣದ ತಿದ್ದುಪಡಿ ಕ್ರಮಗಳನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗಿದೆ.
ಬಳಕೆದಾರಿಕೆಗಳು
ಪ್ರಯೋಗಾಲಯ ವೈದ್ಯಕೀಯ
ಕ್ಲಿನಿಕಲ್ ಪ್ರಯೋಗಾಲಯಗಳಲ್ಲಿ, SDI ಮುಖ್ಯವಾಗಿದೆ:
- ಗುಣಮಟ್ಟದ ನಿಯಂತ್ರಣ: ಪರೀಕ್ಷೆಗಳ ಮತ್ತು ಸಾಧನಗಳ ನಿಖರತೆಯನ್ನು ನಿಗದಿಪಡಿಸಲು, ವಿಶ್ವಾಸಾರ್ಹ ರೋಗಿ ಫಲಿತಾಂಶಗಳನ್ನು ಖಚಿತಪಡಿಸಲು.
- ಪ್ರೊಫಿಷಿಯೆನ್ಸಿ ಪರೀಕ್ಷೆ: ಸ್ನೇಹಿತ ಪ್ರಯೋಗಾಲಯಗಳೊಂದಿಗೆ ಫಲಿತಾಂಶಗಳನ್ನು ಹೋಲಿಸುವುದು, ವಿಭಿನ್ನ ಸ್ಥಳಗಳಲ್ಲಿ ನಿರಂತರ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ಖಚಿತಪಡಿಸಲು.
- ವಿಧಾನ ಮಾನ್ಯತೆ: ಹೊಸ ಪರೀಕ್ಷಾ ವಿಧಾನಗಳನ್ನು ಸ್ಥಾಪಿತ ಪ್ರಮಾಣಗಳ ವಿರುದ್ಧ ಅಂದಾಜಿಸುವುದು, ಅವುಗಳ ನಿಖರತೆಯನ್ನು ಖಚಿತಪಡಿಸಲು.
ಕೈಗಾರಿಕಾ ಗುಣಮಟ್ಟದ ನಿಯಂತ್ರಣ
ಉದ್ಯೋಗಗಳು SDI ಅನ್ನು ಬಳಸುತ್ತವೆ:
- ಪ್ರಕ್ರಿಯೆಯ ಸ್ಥಿರತೆಯನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವುದು: ಉತ್ಪನ್ನದ ಗುಣಮಟ್ಟವನ್ನು ಪರಿಣಾಮ ಬೀರುವಂತೆ ಬದಲಾವಣೆ ಅಥವಾ ಪ್ರವೃತ್ತಿಗಳನ್ನು ಪತ್ತೆಹಚ್ಚುವುದು.
- ಉತ್ಪನ್ನ ಪರೀಕ್ಷೆ: ನಿಯಂತ್ರಣ ಪ್ರಮಾಣಗಳಿಗೆ ಹೋಲಿಸುವ ಮೂಲಕ ಉತ್ಪನ್ನಗಳು ಗುಣಮಟ್ಟದ ನಿರ್ಧಾರಗಳನ್ನು ಪೂರೈಸುತ್ತವೆ, ದೋಷಗಳನ್ನು ಕಡಿಮೆ ಮಾಡುವುದು.
ಸಂಶೋಧನೆ ಮತ್ತು ಅಭಿವೃದ್ಧಿ
ಶೋಧಕರು SDI ಅನ್ನು ಬಳಸುತ್ತಾರೆ:
- ಡೇಟಾ ವಿಶ್ಲೇಷಣೆ: ಪ್ರಯೋಗಾತ್ಮಕ ಫಲಿತಾಂಶಗಳಲ್ಲಿ ಮಹತ್ವಪೂರ್ಣ ವ್ಯತ್ಯಾಸಗಳನ್ನು ಗುರುತಿಸಲು, ಇದು ನಿರ್ಣಯಗಳನ್ನು ಪರಿಣಾಮ ಬೀರುತ್ತದೆ.
- ಸಂಖ್ಯಾತ್ಮಕ ಪ್ರಕ್ರಿಯೆಯ ನಿಯಂತ್ರಣ: ಡೇಟಾ ಸಂಗ್ರಹಣೆ ಮತ್ತು ವಿಶ್ಲೇಷಣೆಯಲ್ಲಿನ ಅಖಂಡತೆಯನ್ನು ಕಾಯ್ದುಕೊಳ್ಳುವುದು, ಸಂಶೋಧನೆಯ ಫಲಿತಾಂಶಗಳ ವಿಶ್ವಾಸಾರ್ಹತೆಯನ್ನು ಸುಧಾರಿಸುವುದು.
ಪರ್ಯಾಯಗಳು
- Z-ಸ್ಕೋರ್: ಜನಸಂಖ್ಯೆಯಲ್ಲಿನ ಅರ್ಥದಿಂದ ಎಷ್ಟು ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ಗಳಷ್ಟು ಅಂಶವಿದೆ ಎಂದು ಅಳೆಯುತ್ತದೆ.
- ಕೋಫಿಷಿಯಂಟ್ ಆಫ್ ವ್ಯಾರಿಯೇಶನ್ (CV%): ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಅನ್ನು ಅರ್ಥಕ್ಕೆ ಹೋಲಿಸುವ ಪ್ರಮಾಣವನ್ನು ಪ್ರತಿಬಿಂಬಿಸುತ್ತದೆ, ಶೇಕಡೆಯಲ್ಲಿ ವ್ಯಕ್ತಪಡಿಸಲಾಗುತ್ತದೆ; ವಿಭಿನ್ನ ಡೇಟಾ ಸೆಟ್ಗಳ ನಡುವಿನ ವ್ಯತ್ಯಾಸವನ್ನು ಹೋಲಿಸಲು ಉಪಯುಕ್ತ.
- ಶೇಕಡಾ ವ್ಯತ್ಯಾಸ: ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶ ಮತ್ತು ನಿಯಂತ್ರಣ ಅರ್ಥದ ನಡುವಿನ ಶೇಕಡಾ ವ್ಯತ್ಯಾಸವನ್ನು ಸೂಚಿಸುವ ಸರಳ ಲೆಕ್ಕಾಚಾರ.
ಇತಿಹಾಸ
ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಇಂಡೆಕ್ಸ್ನ ಪರಿಕಲ್ಪನೆ ಪ್ರಯೋಗಾಲಯದ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ಅಂದಾಜಿಸಲು ಪ್ರಮಾಣಿತ ವಿಧಾನಗಳ ಅಗತ್ಯದಿಂದ ಅಭಿವೃದ್ಧಿ ಹೊಂದಿತು. 20ನೇ ಶತಮಾನದ ಮಧ್ಯಭಾಗದಲ್ಲಿ ಪ್ರೊಫಿಷಿಯೆನ್ಸಿ ಪರೀಕ್ಷೆ ಕಾರ್ಯಕ್ರಮಗಳ ಉದಯದೊಂದಿಗೆ, ಪ್ರಯೋಗಾಲಯಗಳು ಫಲಿತಾಂಶಗಳನ್ನು ಹೋಲಿಸಲು ಪ್ರಮಾಣಿತ ಪ್ರಮಾಣಗಳನ್ನು ಅಗತ್ಯವಾಯಿತು. SDI ಮೂಲಭೂತ ಸಾಧನವಾಗಿ ಪರಿಣಮಿಸಿತು, ಸ್ನೇಹಿತ ಗುಂಪಿನ ಡೇಟಾದ ವಿರುದ್ಧ ನಿಖರತೆಯನ್ನು ಅಂದಾಜಿಸಲು ಸರಳ ಮಾರ್ಗವನ್ನು ಒದಗಿಸುತ್ತದೆ.
ಸಂಖ್ಯಾಶಾಸ್ತ್ರದಲ್ಲಿ ಪ್ರಸಿದ್ಧ ವ್ಯಕ್ತಿಗಳು, ರೋನಾಲ್ಡ್ ಫಿಶರ್ ಮತ್ತು ವಾಲ್ಟರ್ ಶೇವಾರ್ಟ್, SDI ಬಳಸುವಂತಹ ಸಂಖ್ಯಾತ್ಮಕ ಗುಣಮಟ್ಟದ ನಿಯಂತ್ರಣ ವಿಧಾನಗಳ ಅಭಿವೃದ್ಧಿಗೆ ಕೊಡುಗೆ ನೀಡಿದರು. ಅವರ ಕೆಲಸವು ವಿವಿಧ ಕೈಗಾರಿಕೆಯಲ್ಲಿ ಆಧುನಿಕ ಗುಣಮಟ್ಟದ ಖಾತರಿಯ ಅಭ್ಯಾಸಗಳಿಗೆ ನೆಲೆಯಿಡಿತು.
ಮಿತಿಗಳು
- ಸಾಮಾನ್ಯ ವಿತರಣೆಯ ಅನುಮಾನ: SDI ಲೆಕ್ಕಾಚಾರಗಳು ನಿಯಂತ್ರಣ ಡೇಟಾ ಸಾಮಾನ್ಯ ವಿತರಣೆಯನ್ನು ಅನುಮಾನಿಸುತ್ತವೆ. ಡೇಟಾ ತಿರುಗಿದಾಗ, SDI ಕಾರ್ಯಕ್ಷಮತೆಯನ್ನು ನಿಖರವಾಗಿ ಪ್ರತಿಬಿಂಬಿಸುವುದಿಲ್ಲ.
- ಊಹಾಪೋಹಗಳ ಪ್ರಭಾವ: ನಿಯಂತ್ರಣ ಡೇಟಾದಲ್ಲಿನ ಅತಿದೂರ ಮೌಲ್ಯಗಳು ಅರ್ಥ ಮತ್ತು ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಅನ್ನು ತಿರುಗಿಸುತ್ತವೆ, SDI ಲೆಕ್ಕಾಚಾರವನ್ನು ಪರಿಣಾಮ ಬೀರುತ್ತವೆ.
- ಮಾದರಿ ಗಾತ್ರದ ಅವಲಂಬನೆ: ಸಣ್ಣ ನಿಯಂತ್ರಣ ಗುಂಪುಗಳು ವಿಶ್ವಾಸಾರ್ಹ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್ ಅಂದಾಜುಗಳನ್ನು ಒದಗಿಸುವುದಿಲ್ಲ, SDI ಮೌಲ್ಯಗಳನ್ನು ಕಡಿಮೆ ನಿಖರವಾಗಿಸುತ್ತದೆ.
ಉದಾಹರಣೆಗಳು
Excel
' Excel ನಲ್ಲಿ SDI ಅನ್ನು ಲೆಕ್ಕಹಾಕಿ
' A2 ಸೆಲ್ನಲ್ಲಿ ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶ, B2 ನಲ್ಲಿ ನಿಯಂತ್ರಣ ಅರ್ಥ, C2 ನಲ್ಲಿ ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಡಿವಿಯೇಶನ್
= (A2 - B2) / C2
Python
def calculate_sdi(test_result, control_mean, standard_deviation):
return (test_result - control_mean) / standard_deviation
## ಉದಾಹರಣೆಯ ಬಳಕೆ
test_result = 102
control_mean = 100
standard_deviation = 2
sdi = calculate_sdi(test_result, control_mean, standard_deviation)
print(f"SDI: {sdi}")
R
calculate_sdi <- function(test_result, control_mean, standard_deviation) {
(test_result - control_mean) / standard_deviation
}
## ಉದಾಹರಣೆಯ ಬಳಕೆ
test_result <- 102
control_mean <- 100
standard_deviation <- 2
sdi <- calculate_sdi(test_result, control_mean, standard_deviation)
cat("SDI:", sdi, "\n")
MATLAB
% MATLAB ನಲ್ಲಿ SDI ಅನ್ನು ಲೆಕ್ಕಹಾಕಿ
test_result = 102;
control_mean = 100;
standard_deviation = 2;
sdi = (test_result - control_mean) / standard_deviation;
disp(['SDI: ', num2str(sdi)]);
JavaScript
function calculateSDI(testResult, controlMean, standardDeviation) {
return (testResult - controlMean) / standardDeviation;
}
// ಉದಾಹರಣೆಯ ಬಳಕೆ
const testResult = 102;
const controlMean = 100;
const standardDeviation = 2;
const sdi = calculateSDI(testResult, controlMean, standardDeviation);
console.log(`SDI: ${sdi}`);
Java
public class SDICalculator {
public static void main(String[] args) {
double testResult = 102;
double controlMean = 100;
double standardDeviation = 2;
double sdi = (testResult - controlMean) / standardDeviation;
System.out.println("SDI: " + sdi);
}
}
C/C++
#include <iostream>
int main() {
double testResult = 102;
double controlMean = 100;
double standardDeviation = 2;
double sdi = (testResult - controlMean) / standardDeviation;
std::cout << "SDI: " << sdi << std::endl;
return 0;
}
C#
using System;
class Program
{
static void Main()
{
double testResult = 102;
double controlMean = 100;
double standardDeviation = 2;
double sdi = (testResult - controlMean) / standardDeviation;
Console.WriteLine("SDI: " + sdi);
}
}
PHP
<?php
$testResult = 102;
$controlMean = 100;
$standardDeviation = 2;
$sdi = ($testResult - $controlMean) / $standardDeviation;
echo "SDI: " . $sdi;
?>
Ruby
test_result = 102
control_mean = 100
standard_deviation = 2
sdi = (test_result - control_mean) / standard_deviation
puts "SDI: #{sdi}"
Go
package main
import "fmt"
func main() {
testResult := 102.0
controlMean := 100.0
standardDeviation := 2.0
sdi := (testResult - controlMean) / standardDeviation
fmt.Printf("SDI: %.2f\n", sdi)
}
Swift
let testResult = 102.0
let controlMean = 100.0
let standardDeviation = 2.0
let sdi = (testResult - controlMean) / standardDeviation
print("SDI: \(sdi)")
ಚಿತ್ರಗಳು
SDI ಮತ್ತು ಅದರ ವ್ಯಾಖ್ಯಾನ ಶ್ರೇಣಿಗಳನ್ನು ವಿವರಿಸುವ SVG ಚಿತ್ರ.
ಉಲ್ಲೇಖಗಳು
- ಕ್ಲಿನಿಕಲ್ ಮತ್ತು ಪ್ರಯೋಗಾಲಯದ ಮಾನದಂಡ ಸಂಸ್ಥೆ (CLSI) - ಪ್ರಯೋಗಾಲಯದ ಕ್ಲಿನಿಕಲ್ ಫಲಿತಾಂಶಗಳನ್ನು ಸುಧಾರಿಸಲು ಪ್ರೊಫಿಷಿಯೆನ್ಸಿ ಪರೀಕ್ಷೆ ಬಳಸುವುದು
- ವೆಸ್ಟ್ಗರ್ಡ್, ಜೆ.ಒ. - ಮೂಲಭೂತ QC ಅಭ್ಯಾಸಗಳು
- ವಿಕಿಪೀಡಿಯಾ - ಸ್ಟ್ಯಾಂಡರ್ಡ್ ಸ್ಕೋರ್
- ಮಾಂಟ್ಗೋಮರಿ, ಡಿ.ಸಿ. - ಸಂಖ್ಯಾತ್ಮಕ ಗುಣಮಟ್ಟದ ನಿಯಂತ್ರಣಕ್ಕೆ ಪರಿಚಯ