Calculadora de creu trihíbrida i generador de quadrats de Punnett
Genera quadrats de Punnett complets per a creus trihíbrides. Calcula i visualitza patrons d'herència per a tres parells de gens amb proporcions fenotípiques.
Calculadora de Creu Trigíbrida
Instruccions
Introdueix els genotips de dos pares. Cada genotip ha de constar de tres parells de gens (per exemple, AaBbCc).
Exemple: AaBbCc representa un genotip amb al·lels heterozigots per als tres gens.
Quadrat de Punnett
ABC | ABc | AbC | Abc | aBC | aBc | abC | abc | |
---|---|---|---|---|---|---|---|---|
ABC | ||||||||
ABc | ||||||||
AbC | ||||||||
Abc | ||||||||
aBC | ||||||||
aBc | ||||||||
abC | ||||||||
abc |
Ràtios Fenotípics
Documentació
Calculadora de Creu Trihíbrida i Generador de Quadrats de Punnett
Introducció
La Calculadora de Creu Trihíbrida és una potent eina genètica dissenyada per ajudar estudiants, educadors i investigadors a analitzar els patrons d'herència de tres gens diferents simultàniament. En generar quadrats de Punnett exhaustius per a creus trihíbrides, aquesta calculadora proporciona una representació visual de totes les possibles combinacions genètiques i les seves probabilitats. Tant si estàs estudiant la genètica mendeliana, preparant-te per a un examen de biologia, o realitzant experiments de cria, aquesta calculadora simplifica el complex procés de predir els genotips i fenotips de la descendència en patrons d'herència trihíbrida.
Les creus trihíbrides impliquen l'estudi de tres parells de gens simultàniament, resultant en 64 possibles combinacions genètiques en la descendència. Calcular manualment aquestes combinacions pot ser molt laboriós i propens a errors. La nostra calculadora automatitza aquest procés, permetent-te visualitzar ràpidament els patrons d'herència i entendre la distribució estadística de les característiques a través de les generacions.
Comprendre les Creus Trihíbrides
Conceptes Genètics Bàsics
Abans d'utilitzar la calculadora, és important entendre alguns conceptes genètics fonamentals:
- Gen: Un segment de DNA que conté instruccions per a una característica específica
- Al·lel: Diferents formes del mateix gen
- Al·lel dominant: Un al·lel que amaga l'expressió de l'al·lel recessiu (representat per lletres majúscules, per exemple, A)
- Al·lel recessiu: Un al·lel la seva expressió és amagada per l'al·lel dominant (representat per lletres minúscules, per exemple, a)
- Genotip: La composició genètica d'un organisme (per exemple, AaBbCc)
- Fenotip: Les característiques observables resultants del genotip
- Homozigot: Tenir al·lels idèntics per a un gen particular (per exemple, AA o aa)
- Heterozigot: Tenir al·lels diferents per a un gen particular (per exemple, Aa)
Explicació de la Creu Trihíbrida
Una creu trihíbrida examina l'herència de tres parells de gens diferents. Cada progenitor aporta un al·lel de cada parell de gens a la seva descendència. Per a tres parells de gens, cada progenitor pot produir 8 tipus diferents de gamets (2³ = 8), resultant en 64 possibles combinacions (8 × 8 = 64) en la descendència.
Per exemple, si considerem tres parells de gens representats com AaBbCc × AaBbCc:
- Cada progenitor té el genotip AaBbCc
- Cada progenitor pot produir 8 tipus de gamets: ABC, ABc, AbC, Abc, aBC, aBc, abC, abc
- El quadrat de Punnett tindrà 64 cel·les que representen tots els possibles genotips de la descendència
Com Utilitzar la Calculadora de Creu Trihíbrida
Guia Pas a Pas
-
Introduir els Genotips dels Progenitors: Introdueix els genotips per ambdós progenitors als camps designats. Cada genotip ha de consistir en tres parells de gens (per exemple, AaBbCc).
-
Validar el Format: Assegura't que cada genotip segueixi el format correcte amb lletres majúscules i minúscules alternades. Per a cada parell de gens, la primera lletra ha de ser majúscula (dominant) i la segona minúscula (recessiva).
-
Veure el Quadrat de Punnett: Un cop introduïts genotips vàlids, la calculadora genera automàticament un quadrat de Punnett complet que mostra tots els 64 possibles genotips de la descendència.
-
Analitzar les Proporcions Fenotípiques: A sota del quadrat de Punnett, trobaràs un desglose de les proporcions fenotípiques, mostrant la proporció de la descendència que presenta diferents combinacions de característiques.
-
Copiar Resultats: Utilitza el botó "Copiar Resultats" per copiar les proporcions fenotípiques per a informes o anàlisis addicionals.
Requisits de Format d'Entrada
- Cada genotip ha de consistir exactament en 6 lletres (3 parells de gens)
- Cada parell de gens ha de consistir en la mateixa lletra en diferents majúscules (per exemple, Aa, Bb, Cc)
- La primera lletra de cada parell representa l'al·lel dominant (majúscula)
- La segona lletra de cada parell representa l'al·lel recessiu (minúscula)
- Exemple vàlid: AaBbCc (heterozigot per tots tres gens)
- Exemples no vàlids: AABBCC, aabbcc, AbCDef (format incorrecte)
Fonament Matemàtic
Càlculs de Probabilitat
La probabilitat de genotips i fenotips específics en creus trihíbrides segueix els principis de l'herència mendeliana i la regla de multiplicació de la probabilitat.
Per a gens independents, la probabilitat d'una combinació de tres gens específica és igual al producte de les probabilitats per a cada gen individual:
Càlcul de la Proporció Fenotípica
Per a una creu entre dos heterozigots triples (AaBbCc × AaBbCc), la proporció fenotípica segueix el patró:
Això significa:
- 27/64 mostren fenotip dominant per a les tres característiques (A-B-C-)
- 9/64 mostraran fenotip dominant per a les característiques A i B, recessiu per a C (A-B-cc)
- 9/64 mostraran fenotip dominant per a les característiques A i C, recessiu per a B (A-bbC-)
- 9/64 mostraran fenotip dominant per a les característiques B i C, recessiu per a A (aaB-C-)
- 3/64 mostraran fenotip dominant només per a la característica A (A-bbcc)
- 3/64 mostraran fenotip dominant només per a la característica B (aaB-cc)
- 3/64 mostraran fenotip dominant només per a la característica C (aabbC-)
- 1/64 mostraran fenotip recessiu per a les tres característiques (aabbcc)
Nota: La notació A- indica tant AA com Aa (fenotip dominant).
Casos d'Ús
Aplicacions Educatives
-
Demonstacions a l'Aula: Els professors poden utilitzar aquesta calculadora per demostrar visualment patrons d'herència genètica complexos sense haver de crear manualment grans quadrats de Punnett.
-
Pràctica per als Estudiants: Els estudiants poden verificar els seus càlculs manuals i aprofundir en la seva comprensió de la probabilitat en genètica.
-
Preparació per a Exàmens: La calculadora ajuda els estudiants a practicar la predicció de genotips i fenotips de la descendència per a diferents combinacions parentals.
Aplicacions de Recerca
-
Programes de Cria: Els investigadors poden predir el resultat de creus específiques en programes de cria de plantes i animals.
-
Assessorament Genètic: Tot i que la genètica humana implica patrons d'herència més complexos, la calculadora pot ajudar a il·lustrar els principis bàsics de l'herència genètica.
-
Estudis de Genètica de Poblacions: La calculadora pot ser utilitzada per modelar les freqüències genotípiques esperades en poblacions idealitzades.
Exemple Pràctic
Exemple 1: Cria de Plantes de Pèsol
Considerem tres característiques en plantes de pèsol:
- Color de llavors (Groc [A] dominant sobre verd [a])
- Forma de llavors (Rodona [B] dominant sobre arrugada [b])
- Color de les beines (Verd [C] dominant sobre groc [c])
Per a una creu entre dues plantes heterozigotes per a totes tres característiques (AaBbCc × AaBbCc), la calculadora mostrarà:
- 27/64 de la descendència tindran llavors grogues i rodones amb beines verdes
- 9/64 tindran llavors grogues i rodones amb beines grogues
- 9/64 tindran llavors grogues i arrugades amb beines verdes
- I així successivament...
Exemple 2: Genètica del Pelatge de les Rates
Per a tres gens que afecten el pelatge de les rates:
- Color (Negre [A] dominant sobre marró [a])
- Patró (Sòlid [B] dominant sobre taques [b])
- Longitud (Llarga [C] dominant sobre curta [c])
Una creu entre progenitors heterozigots (AaBbCc × AaBbCc) produirà descendència amb 8 fenotips diferents en la proporció 27:9:9:9:3:3:3:1.
Alternatives
Si bé la nostra Calculadora de Creu Trihíbrida està optimitzada per a creus de tres gens, podries considerar aquestes alternatives depenent de les teves necessitats:
-
Calculadora de Creu Monohíbrida: Per analitzar l'herència d'un sol parell de gens, proporcionant una proporció fenotípica més simple de 3:1 per a creus heterozigotes.
-
Calculadora de Creu Dihíbrida: Per estudiar dos parells de gens, resultant en una proporció fenotípica de 9:3:3:1 per a creus entre doble heterozigots.
-
Calculadora de Prova de Chi-Cuadrat: Per analitzar estadísticament si les proporcions genètiques observades coincideixen amb les proporcions mendeliana esperades.
-
Programari Avançat de Modelatge Genètic: Per a patrons d'herència complexos que impliquen vinculació, epistàsia o trets poligènics.
Història de les Creus Genètiques i Quadrats de Punnett
La base de la genètica moderna va ser establerta per Gregor Mendel a la dècada de 1860 mitjançant els seus experiments amb plantes de pèsol. El treball de Mendel va establir els principis de l'herència, incloent els conceptes de trets dominants i recessius, que formen la base de les creus analitzades per la nostra calculadora.
El quadrat de Punnett, anomenat així pel genetista britànic Reginald Punnett, va ser desenvolupat a principis del segle XX com un diagrama per predir el resultat d'un experiment de cria. Punnett, que va treballar amb William Bateson, va crear aquesta eina visual per representar totes les possibles combinacions de gamets en la reproducció sexual.
Inicialment, els quadrats de Punnett es van utilitzar per a creus monohíbrides simples, però la tècnica aviat es va estendre a creus dihíbrides i trihíbrides. El desenvolupament dels quadrats de Punnett trihíbrids va representar un avançament significatiu en l'anàlisi genètica, permetent als científics seguir l'herència de múltiples trets simultàniament.
Amb l'arribada dels ordinadors, calcular creus genètiques complexes es va fer més accessible, conduint al desenvolupament d'eines com aquesta Calculadora de Creu Trihíbrida, que pot generar instantàniament quadrats de Punnett de 8×8 que serien tediosos de crear a mà.
Exemples de Codi
Aquí hi ha exemples de com calcular les probabilitats de creus trihíbrides en diferents llenguatges de programació:
1def generate_gametes(genotype):
2 """Generar tots els possibles gamets d'un genotip trihíbrid."""
3 if len(genotype) != 6:
4 return []
5
6 # Extraure al·lels per a cada gen
7 gene1 = [genotype[0], genotype[1]]
8 gene2 = [genotype[2], genotype[3]]
9 gene3 = [genotype[4], genotype[5]]
10
11 gametes = []
12 for a in gene1:
13 for b in gene2:
14 for c in gene3:
15 gametes.append(a + b + c)
16
17 return gametes
18
19def calculate_phenotypic_ratio(parent1, parent2):
20 """Calcular la proporció fenotípica per a una creu trihíbrida."""
21 gametes1 = generate_gametes(parent1)
22 gametes2 = generate_gametes(parent2)
23
24 # Comptar fenotips
25 phenotypes = {"ABC": 0, "ABc": 0, "AbC": 0, "Abc": 0,
26 "aBC": 0, "aBc": 0, "abC": 0, "abc": 0}
27
28 for g1 in gametes1:
29 for g2 in gametes2:
30 # Determinar el genotip de la descendència
31 genotype = ""
32 for i in range(3):
33 # Ordenar al·lels (primer les majúscules)
34 alleles = sorted([g1[i], g2[i]], key=lambda x: x.lower() + x)
35 genotype += "".join(alleles)
36
37 # Determinar el fenotip
38 phenotype = ""
39 phenotype += "A" if genotype[0].isupper() or genotype[1].isupper() else "a"
40 phenotype += "B" if genotype[2].isupper() or genotype[3].isupper() else "b"
41 phenotype += "C" if genotype[4].isupper() or genotype[5].isupper() else "c"
42
43 phenotypes[phenotype] += 1
44
45 return phenotypes
46
47# Exemple d'ús
48parent1 = "AaBbCc"
49parent2 = "AaBbCc"
50ratio = calculate_phenotypic_ratio(parent1, parent2)
51print(ratio)
52
1function generateGametes(genotype) {
2 if (genotype.length !== 6) return [];
3
4 const gene1 = [genotype[0], genotype[1]];
5 const gene2 = [genotype[2], genotype[3]];
6 const gene3 = [genotype[4], genotype[5]];
7
8 const gametes = [];
9 for (const a of gene1) {
10 for (const b of gene2) {
11 for (const c of gene3) {
12 gametes.push(a + b + c);
13 }
14 }
15 }
16
17 return gametes;
18}
19
20function calculatePhenotypicRatio(parent1, parent2) {
21 const gametes1 = generateGametes(parent1);
22 const gametes2 = generateGametes(parent2);
23
24 const phenotypes = {
25 "ABC": 0, "ABc": 0, "AbC": 0, "Abc": 0,
26 "aBC": 0, "aBc": 0, "abC": 0, "abc": 0
27 };
28
29 for (const g1 of gametes1) {
30 for (const g2 of gametes2) {
31 // Determinar el fenotip de la descendència
32 let phenotype = "";
33
34 // Per a cada posició de gen, comprovar si algun al·lel és dominant
35 phenotype += (g1[0].toUpperCase() === g1[0] || g2[0].toUpperCase() === g2[0]) ? "A" : "a";
36 phenotype += (g1[1].toUpperCase() === g1[1] || g2[1].toUpperCase() === g2[1]) ? "B" : "b";
37 phenotype += (g1[2].toUpperCase() === g1[2] || g2[2].toUpperCase() === g2[2]) ? "C" : "c";
38
39 phenotypes[phenotype]++;
40 }
41 }
42
43 return phenotypes;
44}
45
46// Exemple d'ús
47const parent1 = "AaBbCc";
48const parent2 = "AaBbCc";
49const ratio = calculatePhenotypicRatio(parent1, parent2);
50console.log(ratio);
51
1import java.util.*;
2
3public class TrihybridCrossCalculator {
4 public static List<String> generateGametes(String genotype) {
5 if (genotype.length() != 6) {
6 return new ArrayList<>();
7 }
8
9 char[] gene1 = {genotype.charAt(0), genotype.charAt(1)};
10 char[] gene2 = {genotype.charAt(2), genotype.charAt(3)};
11 char[] gene3 = {genotype.charAt(4), genotype.charAt(5)};
12
13 List<String> gametes = new ArrayList<>();
14 for (char a : gene1) {
15 for (char b : gene2) {
16 for (char c : gene3) {
17 gametes.add("" + a + b + c);
18 }
19 }
20 }
21
22 return gametes;
23 }
24
25 public static Map<String, Integer> calculatePhenotypicRatio(String parent1, String parent2) {
26 List<String> gametes1 = generateGametes(parent1);
27 List<String> gametes2 = generateGametes(parent2);
28
29 Map<String, Integer> phenotypes = new HashMap<>();
30 phenotypes.put("ABC", 0);
31 phenotypes.put("ABc", 0);
32 phenotypes.put("AbC", 0);
33 phenotypes.put("Abc", 0);
34 phenotypes.put("aBC", 0);
35 phenotypes.put("aBc", 0);
36 phenotypes.put("abC", 0);
37 phenotypes.put("abc", 0);
38
39 for (String g1 : gametes1) {
40 for (String g2 : gametes2) {
41 StringBuilder phenotype = new StringBuilder();
42
43 // Comprovar si algun al·lel és dominant per a cada gen
44 phenotype.append(Character.isUpperCase(g1.charAt(0)) || Character.isUpperCase(g2.charAt(0)) ? "A" : "a");
45 phenotype.append(Character.isUpperCase(g1.charAt(1)) || Character.isUpperCase(g2.charAt(1)) ? "B" : "b");
46 phenotype.append(Character.isUpperCase(g1.charAt(2)) || Character.isUpperCase(g2.charAt(2)) ? "C" : "c");
47
48 phenotypes.put(phenotype.toString(), phenotypes.get(phenotype.toString()) + 1);
49 }
50 }
51
52 return phenotypes;
53 }
54
55 public static void main(String[] args) {
56 String parent1 = "AaBbCc";
57 String parent2 = "AaBbCc";
58 Map<String, Integer> ratio = calculatePhenotypicRatio(parent1, parent2);
59 System.out.println(ratio);
60 }
61}
62
Preguntes Freqüents
Què és una creu trihíbrida?
Una creu trihíbrida és una creu genètica que implica l'estudi de tres parells de gens diferents simultàniament. Cada parell de gens consisteix en dos al·lels, un dominant i un recessiu. Les creus trihíbrides s'utilitzen per entendre com es transmeten múltiples trets junts.
Quants gamets diferents es poden produir en una creu trihíbrida?
En una creu trihíbrida on ambdós progenitors són heterozigots per a tots tres gens (AaBbCc), cada progenitor pot produir 2³ = 8 tipus diferents de gamets: ABC, ABc, AbC, Abc, aBC, aBc, abC, i abc.
Quants genotips diferents són possibles d'una creu trihíbrida?
Una creu trihíbrida entre dos heterozigots triples pot produir 3³ = 27 genotips diferents. Això es deu al fet que cada parell de gens pot resultar en tres genotips possibles (AA, Aa o aa), i hi ha tres parells de gens independents.
Quina és la proporció fenotípica en una creu trihíbrida entre progenitors heterozigots?
La proporció fenotípica en una creu trihíbrida entre progenitors que són heterozigots per a tots tres gens (AaBbCc × AaBbCc) és 27:9:9:9:3:3:3:1. Aquesta representa les vuit possibles combinacions fenotípiques.
Per què és tan gran el quadrat de Punnett per a una creu trihíbrida?
El quadrat de Punnett per a una creu trihíbrida és de 8×8, resultant en 64 cel·les, perquè cada progenitor pot produir 8 tipus diferents de gamets. Aquesta mida gran fa que el càlcul manual sigui tediós, per això les calculadores automatitzades com aquesta són particularment útils.
Pot la calculadora de creu trihíbrida manejar gens vinculats?
No, aquesta calculadora assumeix que els tres gens estan situats en cromosomes diferents i, per tant, assortixen de manera independent (seguint la llei de l'assortiment independent de Mendel). No té en compte la vinculació genètica, que ocorre quan els gens estan situats a prop els uns dels altres en el mateix cromosoma.
Com interpreto els resultats de la calculadora?
La calculadora proporciona dues sortides principals: un quadrat de Punnett complet que mostra tots els possibles genotips de la descendència, i un resum de les proporcions fenotípiques. Les proporcions fenotípiques mostren la proporció de la descendència que presentarà cada possible combinació de trets dominants i recessius.
Puc utilitzar aquesta calculadora per a trets genètics humans?
Si bé la calculadora pot il·lustrar els principis bàsics de l'herència mendeliana, la genètica humana és sovint més complexa, implicant múltiples gens, dominància incompleta, codominància i factors ambientals. La calculadora és més útil per a fins educatius i per a organismes que segueixen patrons d'herència mendeliana simples.
Referències
-
Klug, W. S., Cummings, M. R., Spencer, C. A., & Palladino, M. A. (2019). Conceptes de Genètica (12a ed.). Pearson.
-
Pierce, B. A. (2017). Genètica: Un Enfocament Conceptual (6a ed.). W.H. Freeman and Company.
-
Brooker, R. J. (2018). Genètica: Anàlisi i Principis (6a ed.). McGraw-Hill Education.
-
Snustad, D. P., & Simmons, M. J. (2015). Principis de Genètica (7a ed.). Wiley.
-
Griffiths, A. J. F., Wessler, S. R., Carroll, S. B., & Doebley, J. (2015). Introducció a l'Anàlisi Genètica (11a ed.). W.H. Freeman and Company.
-
Online Mendelian Inheritance in Man (OMIM). https://www.omim.org/
-
Punnett, R. C. (1907). Mendelisme. Macmillan and Company.
-
Mendel, G. (1866). Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, 4, 3-47.
Prova ara la nostra Calculadora de Creu Trihíbrida per generar ràpidament quadrats de Punnett i analitzar patrons d'herència per a tres parells de gens. Tant si ets un estudiant, un educador o un investigador, aquesta eina t'ajudarà a entendre creus genètiques complexes amb facilitat i precisió.
Retroalimentació
Feu clic al toast de feedback per començar a donar feedback sobre aquesta eina
Eines Relacionades
Descobreix més eines que podrien ser útils per al teu flux de treball