Kalkulator Pomiarów Okręgu - Oblicz promień i obwód
Oblicz promień, średnicę, obwód i pole powierzchni okręgu na podstawie jednego znanego parametru za pomocą naszego Kalkulatora Pomiarów Okręgu.
Wizualizacja koła
Dokumentacja
Kalkulator Pomiarów Okręgu
Wprowadzenie
Okrąg jest fundamentalnym kształtem w geometrii, symbolizującym pełnię i symetrię. Nasz Kalkulator Pomiarów Okręgu pozwala na obliczenie promienia, średnicy, obwodu i pola powierzchni okręgu na podstawie jednego znanego parametru. To narzędzie jest nieocenione dla studentów, inżynierów, architektów i każdego, kto jest zainteresowany zrozumieniem właściwości okręgów.
Jak korzystać z tego kalkulatora
-
Wybierz znany parametr:
- Promień
- Średnica
- Obwód
- Pole powierzchni
-
Wprowadź wartość:
- Wprowadź wartość liczbową dla wybranego parametru.
- Upewnij się, że wartość jest dodatnią liczbą rzeczywistą.
-
Oblicz:
- Kalkulator obliczy pozostałe pomiary okręgu.
- Wyświetlane wyniki obejmują:
- Promień ()
- Średnica ()
- Obwód ()
- Pole powierzchni ()
Walidacja wejścia
Kalkulator wykonuje następujące kontrole na danych wejściowych użytkownika:
- Dodatnie liczby: Wszystkie dane wejściowe muszą być dodatnimi liczbami rzeczywistymi.
- Ważne wartości liczbowe: Dane wejściowe muszą być liczbowe i nie mogą zawierać żadnych znaków nieliczbowych.
Jeśli wykryte zostaną niewłaściwe dane wejściowe, zostanie wyświetlona wiadomość o błędzie, a obliczenia nie będą kontynuowane, dopóki nie zostaną poprawione.
Wzory
Relacje między promieniem, średnicą, obwodem i polem powierzchni okręgu są określone przez następujące wzory:
-
Średnica ():
-
Obwód ():
-
Pole powierzchni ():
-
Promień () z obwodu:
-
Promień () z pola powierzchni:
Obliczenia
Oto jak kalkulator oblicza każdy pomiar na podstawie wprowadzenia:
-
Gdy znany jest promień ():
- Średnica:
- Obwód:
- Pole powierzchni:
-
Gdy znana jest średnica ():
- Promień:
- Obwód:
- Pole powierzchni:
-
Gdy znany jest obwód ():
- Promień:
- Średnica:
- Pole powierzchni:
-
Gdy znane jest pole powierzchni ():
- Promień:
- Średnica:
- Obwód:
Przypadki brzegowe i obsługa wejścia
-
Ujemne dane wejściowe:
- Ujemne wartości nie są ważne dla pomiarów okręgu.
- Kalkulator wyświetli wiadomość o błędzie dla ujemnych danych wejściowych.
-
Zero jako dane wejściowe:
- Zero jest ważnym wejściem, ale skutkuje tym, że wszystkie inne pomiary są zerowe.
- Fizycznie, okrąg o zerowych wymiarach nie istnieje, więc wprowadzenie zera służy jako przypadek teoretyczny.
-
Ekstremalnie duże wartości:
- Kalkulator może obsługiwać bardzo duże liczby, ograniczone przez precyzję używanego języka programowania.
- Należy być świadomym potencjalnych błędów zaokrągleń przy ekstremalnie dużych wartościach.
-
Dane wejściowe nieliczbowe:
- Dane wejściowe muszą być liczbowe.
- Jakiekolwiek dane nieliczbowe spowodują wyświetlenie wiadomości o błędzie.
Przykłady zastosowania
Kalkulator Pomiarów Okręgu jest przydatny w różnych zastosowaniach w świecie rzeczywistym:
-
Inżynieria i architektura:
- Projektowanie komponentów okrągłych, takich jak rury, koła i łuki.
- Obliczanie wymagań materiałowych dla projektów budowlanych związanych z kształtami okrągłymi.
-
Produkcja:
- Określanie wymiarów części i narzędzi.
- Obliczanie ścieżek cięcia dla maszyn CNC.
-
Astronomia i nauki o przestrzeni:
- Obliczanie orbit planetarnych, które często są przybliżane jako okręgi.
- Szacowanie pola powierzchni ciał niebieskich.
-
Codzienne życie:
- Planowanie okrągłych ogrodów, fontann lub okrągłych stołów.
- Określanie ilości ogrodzenia potrzebnego do okrągłych ogrodzeń.
Alternatywy
Chociaż okręgi są fundamentalne, istnieją alternatywne kształty i wzory dla różnych zastosowań:
-
Elipsy:
- Dla zastosowań wymagających wydłużonych okręgów.
- Obliczenia obejmują półosię większą i półosię mniejszą.
-
Sektory i segmenty:
- Części okręgu.
- Przydatne do obliczania pól powierzchni lub obwodów kawałków w kształcie ciasta.
-
Regularne wielokąty:
- Przybliżenia okręgów przy użyciu kształtów takich jak sześciokąty lub ośmiokąty.
- Ułatwia budowę i obliczenia w niektórych kontekstach inżynieryjnych.
Historia
Badanie okręgów sięga starożytnych cywilizacji:
-
Starożytna matematyka:
- Babilończycy i Egipcjanie używali przybliżeń dla .
- Archimedes (ok. 287–212 p.n.e.) przedstawił jeden z pierwszych zapisanych algorytmów do obliczania , szacując go między a .
-
Rozwój :
- Symbol został spopularyzowany przez walijskiego matematyka Williama Jonesa w 1706 roku, a później przyjęty przez Leonharda Eulera.
- jest liczbą niewymierną reprezentującą stosunek obwodu okręgu do jego średnicy.
-
Nowoczesna matematyka:
- Okrąg był centralnym punktem rozwoju w trygonometrii, analizie matematycznej i analizie zespolonej.
- Służy jako podstawowa koncepcja w geometrii i dowodach matematycznych.
Przykłady
Poniżej znajdują się przykłady kodu demonstrujące, jak obliczać pomiary okręgu w różnych językach programowania:
1## Kod Pythona do obliczania pomiarów okręgu
2import math
3
4def calculate_circle_from_radius(radius):
5 diameter = 2 * radius
6 circumference = 2 * math.pi * radius
7 area = math.pi * radius ** 2
8 return diameter, circumference, area
9
10## Przykład użycia:
11radius = 5
12d, c, a = calculate_circle_from_radius(radius)
13print(f"Promień: {radius}")
14print(f"Średnica: {d}")
15print(f"Obwód: {c:.2f}")
16print(f"Pole powierzchni: {a:.2f}")
17
1// Kod JavaScript do obliczania pomiarów okręgu
2function calculateCircleFromDiameter(diameter) {
3 const radius = diameter / 2;
4 const circumference = Math.PI * diameter;
5 const area = Math.PI * Math.pow(radius, 2);
6 return { radius, circumference, area };
7}
8
9// Przykład użycia:
10const diameter = 10;
11const { radius, circumference, area } = calculateCircleFromDiameter(diameter);
12console.log(`Promień: ${radius}`);
13console.log(`Średnica: ${diameter}`);
14console.log(`Obwód: ${circumference.toFixed(2)}`);
15console.log(`Pole powierzchni: ${area.toFixed(2)}`);
16
1// Kod Java do obliczania pomiarów okręgu
2public class CircleCalculator {
3 public static void calculateCircleFromCircumference(double circumference) {
4 double radius = circumference / (2 * Math.PI);
5 double diameter = 2 * radius;
6 double area = Math.PI * Math.pow(radius, 2);
7
8 System.out.printf("Promień: %.2f%n", radius);
9 System.out.printf("Średnica: %.2f%n", diameter);
10 System.out.printf("Obwód: %.2f%n", circumference);
11 System.out.printf("Pole powierzchni: %.2f%n", area);
12 }
13
14 public static void main(String[] args) {
15 double circumference = 31.42;
16 calculateCircleFromCircumference(circumference);
17 }
18}
19
1// Kod C# do obliczania pomiarów okręgu
2using System;
3
4class CircleCalculator
5{
6 static void CalculateCircleFromArea(double area)
7 {
8 double radius = Math.Sqrt(area / Math.PI);
9 double diameter = 2 * radius;
10 double circumference = 2 * Math.PI * radius;
11
12 Console.WriteLine($"Promień: {radius:F2}");
13 Console.WriteLine($"Średnica: {diameter:F2}");
14 Console.WriteLine($"Obwód: {circumference:F2}");
15 Console.WriteLine($"Pole powierzchni: {area:F2}");
16 }
17
18 static void Main()
19 {
20 double area = 78.54;
21 CalculateCircleFromArea(area);
22 }
23}
24
1## Kod Ruby do obliczania pomiarów okręgu
2def calculate_circle_from_radius(radius)
3 diameter = 2 * radius
4 circumference = 2 * Math::PI * radius
5 area = Math::PI * radius ** 2
6 return diameter, circumference, area
7end
8
9## Przykład użycia:
10radius = 5.0
11diameter, circumference, area = calculate_circle_from_radius(radius)
12puts "Promień: #{radius}"
13puts "Średnica: #{diameter}"
14puts "Obwód: #{circumference.round(2)}"
15puts "Pole powierzchni: #{area.round(2)}"
16
1<?php
2// Kod PHP do obliczania pomiarów okręgu
3function calculateCircleFromDiameter($diameter) {
4 $radius = $diameter / 2;
5 $circumference = pi() * $diameter;
6 $area = pi() * pow($radius, 2);
7 return array($radius, $circumference, $area);
8}
9
10// Przykład użycia:
11$diameter = 10.0;
12list($radius, $circumference, $area) = calculateCircleFromDiameter($diameter);
13echo "Promień: " . $radius . "\n";
14echo "Średnica: " . $diameter . "\n";
15echo "Obwód: " . round($circumference, 2) . "\n";
16echo "Pole powierzchni: " . round($area, 2) . "\n";
17?>
18
1// Kod Rust do obliczania pomiarów okręgu
2fn calculate_circle_from_circumference(circumference: f64) -> (f64, f64, f64) {
3 let radius = circumference / (2.0 * std::f64::consts::PI);
4 let diameter = 2.0 * radius;
5 let area = std::f64::consts::PI * radius.powi(2);
6 (radius, diameter, area)
7}
8
9fn main() {
10 let circumference = 31.42;
11 let (radius, diameter, area) = calculate_circle_from_circumference(circumference);
12 println!("Promień: {:.2}", radius);
13 println!("Średnica: {:.2}", diameter);
14 println!("Obwód: {:.2}", circumference);
15 println!("Pole powierzchni: {:.2}", area);
16}
17
1// Kod Go do obliczania pomiarów okręgu
2package main
3
4import (
5 "fmt"
6 "math"
7)
8
9func calculateCircleFromArea(area float64) (radius, diameter, circumference float64) {
10 radius = math.Sqrt(area / math.Pi)
11 diameter = 2 * radius
12 circumference = 2 * math.Pi * radius
13 return
14}
15
16func main() {
17 area := 78.54
18 radius, diameter, circumference := calculateCircleFromArea(area)
19 fmt.Printf("Promień: %.2f\n", radius)
20 fmt.Printf("Średnica: %.2f\n", diameter)
21 fmt.Printf("Obwód: %.2f\n", circumference)
22 fmt.Printf("Pole powierzchni: %.2f\n", area)
23}
24
1// Kod Swift do obliczania pomiarów okręgu
2import Foundation
3
4func calculateCircleFromRadius(radius: Double) -> (diameter: Double, circumference: Double, area: Double) {
5 let diameter = 2 * radius
6 let circumference = 2 * Double.pi * radius
7 let area = Double.pi * pow(radius, 2)
8 return (diameter, circumference, area)
9}
10
11// Przykład użycia:
12let radius = 5.0
13let results = calculateCircleFromRadius(radius: radius)
14print("Promień: \(radius)")
15print("Średnica: \(results.diameter)")
16print("Obwód: \(String(format: "%.2f", results.circumference))")
17print("Pole powierzchni: \(String(format: "%.2f", results.area))")
18
1% Kod MATLAB do obliczania pomiarów okręgu
2function [radius, diameter, circumference, area] = calculateCircleFromRadius(radius)
3 diameter = 2 * radius;
4 circumference = 2 * pi * radius;
5 area = pi * radius^2;
6end
7
8% Przykład użycia:
9radius = 5;
10[~, diameter, circumference, area] = calculateCircleFromRadius(radius);
11fprintf('Promień: %.2f\n', radius);
12fprintf('Średnica: %.2f\n', diameter);
13fprintf('Obwód: %.2f\n', circumference);
14fprintf('Pole powierzchni: %.2f\n', area);
15
1' Formuła Excel do obliczania pomiarów okręgu z promienia
2' Zakładając, że promień znajduje się w komórce A1
3Średnica: =2*A1
4Obwód: =2*PI()*A1
5Pole powierzchni: =PI()*A1^2
6
Przykłady numeryczne
-
Dany promień (( r = 5 ) jednostek):
- Średnica: ( d = 2 \times 5 = 10 ) jednostek
- Obwód: ( C = 2\pi \times 5 \approx 31.42 ) jednostek
- Pole powierzchni: ( A = \pi \times 5^2 \approx 78.54 ) jednostek kwadratowych
-
Dana średnica (( d = 10 ) jednostek):
- Promień: ( r = \frac{10}{2} = 5 ) jednostek
- Obwód: ( C = \pi \times 10 \approx 31.42 ) jednostek
- Pole powierzchni: ( A = \frac{\pi \times 10^2}{4} \approx 78.54 ) jednostek kwadratowych
-
Dany obwód (( C = 31.42 ) jednostek):
- Promień: ( r = \frac{31.42}{2\pi} \approx 5 ) jednostek
- Średnica: ( d = 2 \times 5 = 10 ) jednostek
- Pole powierzchni: ( A = \pi \times 5^2 \approx 78.54 ) jednostek kwadratowych
-
Dane pole powierzchni (( A = 78.54 ) jednostek kwadratowych):
- Promień: ( r = \sqrt{\frac{78.54}{\pi}} \approx 5 ) jednostek
- Średnica: ( d = 2 \times 5 = 10 ) jednostek
- Obwód: ( C = 2\pi \times 5 \approx 31.42 ) jednostek
Diagramy
Poniżej znajduje się diagram okręgu ilustrujący promień (( r )), średnicę (( d )), obwód (( C )) i pole powierzchni (( A )).
Rysunek: Diagram okręgu ilustrujący promień (( r )), średnicę (( d )), obwód (( C )) i pole powierzchni (( A )).
Odniesienia
- "Okrąg." Wolfram MathWorld, https://mathworld.wolfram.com/Circle.html.
- "Obwód i pole powierzchni okręgu." Khan Academy, https://www.khanacademy.org/math/basic-geo/basic-geo-circles.
- Beckmann, Petr. Historia ( \pi ). St. Martin's Press, 1971.
- Archimedes. Pomiar okręgu, https://www.math.ubc.ca/~vjungic/students/Archimedes-Measurement%20of%20a%20Circle.pdf.
Opinie
Kliknij komunikat informujący, aby rozpocząć udzielanie opinii na temat tego narzędzia
Powiązane narzędzia
Odkryj więcej narzędzi, które mogą być przydatne dla Twojego przepływu pracy