Rakuanduste aega arvutav kalkulaator: mõõda rakkude kasvukiirus
Arvuta aeg, mis on vajalik rakkude arvu kahekordistamiseks, lähtudes algsest arvust, lõpparvust ja möödunud ajast. Hädavajalik mikrobioloogia, rakukasvatuse ja bioloogilise uurimistöö jaoks.
Rakkude Kasvuaja Hinnang
Sisendparameetrid
Tulemused
Dokumentatsioon
Rakenduslik rakkude kahekordistumise aja kalkulaator: mõõda rakkude kasvukiirus täpselt
Rakkude kahekordistumise aja tutvustus
Rakkude kahekordistumise aeg on rakubioloogia ja mikrobioloogia põhikontseptsioon, mis mõõdab aega, mis on vajalik rakkude populatsiooni kahekordistamiseks. See oluline parameeter aitab teadlasi, uurijaid ja üliõpilasi mõista kasvudünaamikat erinevates bioloogilistes süsteemides, alates bakterikultuuridest kuni imetajarakkude rida. Meie Rakkude kahekordistumise aja kalkulaator pakub lihtsat, kuid võimsat tööriista, et täpselt määrata, kui kiiresti rakud paljunevad, tuginedes algsele arvule, lõpparvule ja möödunud aja mõõtmistele.
Olgu tegemist laboratoorse uurimistöö, mikroobide kasvu uurimise, vähirakkude paljunemise analüüsi või rakubioloogia kontseptsioonide õpetamisega, kahekordistumise aja mõistmine annab väärtuslikku teavet rakulise käitumise ja populatsiooni dünaamika kohta. See kalkulaator kõrvaldab keerulised käsitsi arvutused ja annab koheselt usaldusväärsed tulemused, mida saab kasutada kasvukiiruste võrdlemiseks erinevates tingimustes või rakutüüpides.
Teadus rakkude kahekordistumise aja taga
Matemaatiline valem
Rakkude kahekordistumise aeg (Td) arvutatakse järgmise valemi abil:
Kus:
- Td = kahekordistumise aeg (samades ajaväärtustes nagu t)
- t = mõõtmiste vaheline aeg
- N0 = algne rakkude arv
- N = lõpparv
- log = looduslik logaritm (baas e)
See valem on tuletatud eksponentsiaalse kasvu võrrandist ja annab täpse hinnangu kahekordistumise ajale, kui rakud on oma eksponentsiaalses kasvufaasis.
Muutujate mõistmine
-
Algne rakkude arv (N0): Rakkude arv teie vaatlusperioodi alguses. See võib olla bakterirakkude arv värskes kultuuris, pärmi algarv kääritamisprotsessis või algne arv vähirakke eksperimentaalses ravis.
-
Lõpparv (N): Rakkude arv teie vaatlusperioodi lõpus. See peaks olema mõõdetud sama meetodi abil nagu algne arv, et tagada järjepidevus.
-
Möödunud aeg (t): Aeg, mis möödus algsete ja lõpparvude mõõtmiste vahel. Seda saab mõõta minutites, tundides, päevades või mis tahes sobivas ajaväärtuses, sõltuvalt uuritavate rakkude kasvukiirusest.
-
Kahekordistumise aeg (Td): Arvutuse tulemus, mis esindab aega, mis on vajalik rakkude populatsiooni kahekordistamiseks. Üksus vastab möödunud aja mõõtühikule.
Matemaatiline tuletamine
Kahekordistumise aja valem on tuletatud eksponentsiaalse kasvu võrrandist:
Võttes mõlemalt poolt loodusliku logaritmi:
Korrastades Td leidmiseks:
Kuna paljud kalkulaatorid ja programmeerimiskeeled kasutavad logaritmi baas 10, saab valemit väljendada ka järgmiselt:
Kus 0.301 on ligikaudu log10(2).
Kuidas kasutada rakkude kahekordistumise aja kalkulaatorit
Samm-sammuline juhend
-
Sisesta algne rakkude arv: Sisestage rakkude arv teie vaatlusperioodi alguses. See peab olema positiivne number.
-
Sisesta lõpparv: Sisestage rakkude arv teie vaatlusperioodi lõpus. See peab olema positiivne number, mis on suurem algsest arvust.
-
Sisesta möödunud aeg: Sisestage ajavahemik algsete ja lõpparvude mõõtmiste vahel.
-
Vali ajaväärtus: Valige rippmenüüst sobiv ajaväärtus (minutid, tunnid, päevad).
-
Vaata tulemusi: Kalkulaator arvutab automaatselt ja kuvab kahekordistumise aja teie valitud ajaväärtuses.
-
Tõlgenda tulemust: Lühike kahekordistumise aeg näitab kiiremat rakkude kasvu, samas kui pikem kahekordistumise aeg viitab aeglasemale paljunemisele.
Näidis arvutus
Käime läbi näidis arvutuse:
- Algne rakkude arv (N0): 1,000,000 rakku
- Lõpparv (N): 8,000,000 rakku
- Möödunud aeg (t): 24 tundi
Kasutades meie valemit:
See tähendab, et antud tingimustes kahekordistub rakkude populatsioon umbes iga 8 tunni järel.
Praktilised rakendused ja kasutusjuhtumid
Mikrobioloogia ja bakterite kasv
Mikrobioloogid mõõdavad regulaarselt bakterite kahekordistumise aegu, et:
- Iseloomustada uusi bakteristruktuure
- Optimeerida kasvutingimusi tööstuslikuks kääritamiseks
- Uurida antibiootikumide mõju bakterite paljunemisele
- Jälgida bakterite saastumist toidu- ja veenäidistes
- Arendada matemaatilisi mudeleid bakterite populatsiooni dünaamika kohta
Näiteks Escherichia coli kahekordistumise aeg on tavaliselt umbes 20 minutit optimaalses laboritingimustes, samas kui Mycobacterium tuberculosis võib kahekordistuda 24 tundi või kauem.
Rakkude kultuur ja biotehnoloogia
Rakkude kultuuri laborites aitavad kahekordistumise aja arvutused:
- Määrata rakuliini omadusi ja tervist
- Plaanida sobivaid rakupassimise intervalli
- Optimeerida kasvumeedia koostisi
- Hinnata kasvufaktorite või inhibiitorite mõju
- Plaanida eksperimentaalsete ajakava rakkude põhiste katsete jaoks
Imetajarakkude liinidel on kahekordistumise ajad tavaliselt vahemikus 12-24 tundi, kuigi see varieerub laialdaselt sõltuvalt rakutüübist ja kultuuritingimustest.
Vähiuuringud
Vähiuuringute teadlased kasutavad kahekordistumise aja mõõtmisi, et:
- Võrrelda paljunemiskiirusid normaalse ja vähkkasvaja rakkude vahel
- Hinnata vähivastaste ravimite efektiivsust
- Uurida kasvajate kasvudünaamikat in vivo
- Arendada isikupärastatud ravistrateegiaid
- Ennustada haiguse progresseerumist
Kiiresti jagunevad vähirakud omavad sageli lühemaid kahekordistumise aegu kui nende normaalsed vasted, mistõttu on kahekordistumise aeg on onkoloogiliste uuringute jaoks oluline parameeter.
Kääritamine ja õlle valmistamine
Kääritamises ja õlle valmistamises aitab pärmi kahekordistumise aeg:
- Ennustada kääritamise kestust
- Optimeerida pärmi viskamise määra
- Jälgida kääritamise tervist
- Arendada järjepidevaid tootmisplaane
- Lahendada aeglaseid või peatunud kääritamisi
Akadeemiline õpetamine
Haridusasutustes pakuvad kahekordistumise aja arvutused:
- Praktilisi harjutusi bioloogia ja mikrobioloogia üliõpilastele
- Eksponentsiaalse kasvu kontseptsioonide demonstreerimist
- Laborioskuste arendamise võimalusi
- Andmeanalüüsi praktikat teadusüliõpilastele
- Seoseid matemaatiliste mudelite ja bioloogilise reaalsuse vahel
Alternatiivid kahekordistumise ajale
Kuigi kahekordistumise aeg on laialdaselt kasutatav mõõdik, on olemas alternatiivseid viise rakkude kasvu mõõtmiseks:
-
Kasvukiirus (μ): Kasvukiirus on otseselt seotud kahekordistumise ajaga (μ = ln(2)/Td) ja seda kasutatakse sageli teadusartiklites ja matemaatilistes mudelites.
-
Generatsiooni aeg: Sarnane kahekordistumise ajale, kuid mõnikord kasutatakse see spetsiaalselt individuaalsete rakkude tasemel, mitte populatsiooni tasemel.
-
Populatsiooni kahekordistumise tase (PDL): Kasutatakse eriti imetajarakkude puhul, et jälgida kumulatiivset kahekordistumiste arvu, mida rakupopulatsioon on läbinud.
-
Kasvukõverad: Kogu kasvukõvera (lag, eksponentsiaalne ja statsionaarne faas) joonistamine annab rohkem teavet kui ainult kahekordistumise aeg.
-
Metaboolsete aktiivsuse testid: Sellised mõõdud nagu MTT või Alamar Blue testid, mis hindavad metaboolset aktiivsust rakkude arvu näitena.
Igal neist alternatiividest on spetsiifilised rakendused, kus need võivad olla sobivamad kui kahekordistumise aja arvutused.
Ajalooline kontekst ja areng
Rakkude kasvukiirus mõõtmise kontseptsioon ulatub tagasi mikrobioloogia varajastesse päevadesse 19. sajandi lõpus. 1942. aastal avaldas Jacques Monod oma põhiteose bakterikultuuride kasvust, kehtestades paljusid matemaatilisi põhimõtteid, mida kasutatakse siiani mikroobide kasvudünaamika kirjeldamiseks.
Täpse rakkude kahekordistumise aja mõõtmise võime muutus üha olulisemaks koos antibiootikumide arendamisega 20. sajandi keskel, kuna teadlased vajasid viise, kuidas kvantifitseerida, kuidas need ühendid bakterite kasvu mõjutavad. Samuti lõi 1950ndatel ja 1960ndatel aastatel rakkude kultuuri tehnikate tõus uued rakendused kahekordistumise aja mõõtmiste jaoks imetajarakkude süsteemides.
- sajandi lõpus automaatsete rakkude loendamise tehnoloogiate, alates hemotsütoomeetritest kuni voolutsütomeetria ja reaalajas rakkude analüüsi süsteemideni, abil paranes rakkude arvu mõõtmise täpsus ja lihtsus dramaatiliselt. See tehnoloogiline areng on teinud kahekordistumise aja arvutused teadlastele erinevates bioloogilistes distsipliinides kergemaks ja usaldusväärsemaks.
Täna jääb rakkude kahekordistumise aeg põhiteguriks valdkondades alates põhimikrobioloogiast kuni vähiuuringute, sünteetilise bioloogia ja biotehnoloogiani. Kaasaegsed arvutuslikud tööriistad on veelgi lihtsustanud neid arvutusi, võimaldades teadlastel keskenduda tulemuste tõlgendamisele, mitte käsitsi arvutamisele.
Programmeerimise näited
Siin on koodinäited rakkude kahekordistumise aja arvutamiseks erinevates programmeerimiskeeltes:
1' Exceli valem rakkude kahekordistumise aja jaoks
2=ELAPSED_TIME*LN(2)/LN(FINAL_COUNT/INITIAL_COUNT)
3
4' Exceli VBA funktsioon
5Function DoublingTime(initialCount As Double, finalCount As Double, elapsedTime As Double) As Double
6 DoublingTime = elapsedTime * Log(2) / Log(finalCount / initialCount)
7End Function
8
1import math
2
3def calculate_doubling_time(initial_count, final_count, elapsed_time):
4 """
5 Arvuta rakkude kahekordistumise aeg.
6
7 Parameetrid:
8 initial_count (float): Algne rakkude arv
9 final_count (float): Lõpparv rakkude arv
10 elapsed_time (float): Aeg, mis möödus mõõtmiste vahel
11
12 Tagastab:
13 float: Kahekordistumise aeg samades ühikutes nagu elapsed_time
14 """
15 if initial_count <= 0 or final_count <= 0:
16 raise ValueError("Rakkude arv peab olema positiivne")
17 if initial_count >= final_count:
18 raise ValueError("Lõpparv peab olema suurem algsest arvust")
19
20 return elapsed_time * math.log(2) / math.log(final_count / initial_count)
21
22# Näidis kasutamine
23try:
24 initial = 1000
25 final = 8000
26 time = 24 # tundi
27 doubling_time = calculate_doubling_time(initial, final, time)
28 print(f"Rakkude kahekordistumise aeg: {doubling_time:.2f} tundi")
29except ValueError as e:
30 print(f"Viga: {e}")
31
1/**
2 * Arvuta rakkude kahekordistumise aeg
3 * @param {number} initialCount - Algne rakkude arv
4 * @param {number} finalCount - Lõpparv rakkude arv
5 * @param {number} elapsedTime - Aeg, mis möödus mõõtmiste vahel
6 * @returns {number} Kahekordistumise aeg samades ühikutes nagu elapsedTime
7 */
8function calculateDoublingTime(initialCount, finalCount, elapsedTime) {
9 // Sisendi valideerimine
10 if (initialCount <= 0 || finalCount <= 0) {
11 throw new Error("Rakkude arv peab olema positiivne number");
12 }
13 if (initialCount >= finalCount) {
14 throw new Error("Lõpparv peab olema suurem algsest arvust");
15 }
16
17 // Arvuta kahekordistumise aeg
18 return elapsedTime * Math.log(2) / Math.log(finalCount / initialCount);
19}
20
21// Näidis kasutamine
22try {
23 const initialCount = 1000;
24 const finalCount = 8000;
25 const elapsedTime = 24; // tundi
26
27 const doublingTime = calculateDoublingTime(initialCount, finalCount, elapsedTime);
28 console.log(`Rakkude kahekordistumise aeg: ${doublingTime.toFixed(2)} tundi`);
29} catch (error) {
30 console.error(`Viga: ${error.message}`);
31}
32
1public class CellDoublingTimeCalculator {
2 /**
3 * Arvuta rakkude kahekordistumise aeg
4 *
5 * @param initialCount Algne rakkude arv
6 * @param finalCount Lõpparv rakkude arv
7 * @param elapsedTime Aeg, mis möödus mõõtmiste vahel
8 * @return Kahekordistumise aeg samades ühikutes nagu elapsedTime
9 * @throws IllegalArgumentException kui sisendid on kehtetud
10 */
11 public static double calculateDoublingTime(double initialCount, double finalCount, double elapsedTime) {
12 // Sisendi valideerimine
13 if (initialCount <= 0 || finalCount <= 0) {
14 throw new IllegalArgumentException("Rakkude arv peab olema positiivne number");
15 }
16 if (initialCount >= finalCount) {
17 throw new IllegalArgumentException("Lõpparv peab olema suurem algsest arvust");
18 }
19
20 // Arvuta kahekordistumise aeg
21 return elapsedTime * Math.log(2) / Math.log(finalCount / initialCount);
22 }
23
24 public static void main(String[] args) {
25 try {
26 double initialCount = 1000;
27 double finalCount = 8000;
28 double elapsedTime = 24; // tundi
29
30 double doublingTime = calculateDoublingTime(initialCount, finalCount, elapsedTime);
31 System.out.printf("Rakkude kahekordistumise aeg: %.2f tundi%n", doublingTime);
32 } catch (IllegalArgumentException e) {
33 System.err.println("Viga: " + e.getMessage());
34 }
35 }
36}
37
1calculate_doubling_time <- function(initial_count, final_count, elapsed_time) {
2 # Sisendi valideerimine
3 if (initial_count <= 0 || final_count <= 0) {
4 stop("Rakkude arv peab olema positiivne number")
5 }
6 if (initial_count >= final_count) {
7 stop("Lõpparv peab olema suurem algsest arvust")
8 }
9
10 # Arvuta kahekordistumise aeg
11 doubling_time <- elapsed_time * log(2) / log(final_count / initial_count)
12 return(doubling_time)
13}
14
15# Näidis kasutamine
16initial_count <- 1000
17final_count <- 8000
18elapsed_time <- 24 # tundi
19
20tryCatch({
21 doubling_time <- calculate_doubling_time(initial_count, final_count, elapsed_time)
22 cat(sprintf("Rakkude kahekordistumise aeg: %.2f tundi\n", doubling_time))
23}, error = function(e) {
24 cat(sprintf("Viga: %s\n", e$message))
25})
26
1function doubling_time = calculateDoublingTime(initialCount, finalCount, elapsedTime)
2 % CALCULATEDOUBLINGTIME Arvuta rakkude populatsiooni kahekordistumise aeg
3 % doubling_time = calculateDoublingTime(initialCount, finalCount, elapsedTime)
4 % arvutab aja, mis on vajalik rakkude populatsiooni kahekordistamiseks
5 %
6 % Sisendid:
7 % initialCount - Algne rakkude arv
8 % finalCount - Lõpparv rakkude arv
9 % elapsedTime - Aeg, mis möödus mõõtmiste vahel
10 %
11 % Väljund:
12 % doubling_time - Aeg, mis on vajalik populatsiooni kahekordistamiseks
13
14 % Sisendi valideerimine
15 if initialCount <= 0 || finalCount <= 0
16 error('Rakkude arv peab olema positiivne number');
17 end
18 if initialCount >= finalCount
19 error('Lõpparv peab olema suurem algsest arvust');
20 end
21
22 % Arvuta kahekordistumise aeg
23 doubling_time = elapsedTime * log(2) / log(finalCount / initialCount);
24end
25
26% Näidis kasutamine
27try
28 initialCount = 1000;
29 finalCount = 8000;
30 elapsedTime = 24; % tundi
31
32 doublingTime = calculateDoublingTime(initialCount, finalCount, elapsedTime);
33 fprintf('Rakkude kahekordistumise aeg: %.2f tundi\n', doublingTime);
34catch ME
35 fprintf('Viga: %s\n', ME.message);
36end
37
Rakkude kasvu ja kahekordistumise aja visualiseerimine
Ülaltoodud diagramm illustreerib rakkude kahekordistumise aja kontseptsiooni näitega, kus rakud kahekordistuvad umbes iga 8 tunni järel. Alustades algsest populatsioonist 1,000 rakku (ajal 0), kasvab populatsioon:
- 2,000 rakuni 8 tunni pärast (esimene kahekordistumine)
- 4,000 rakuni 16 tunni pärast (teine kahekordistumine)
- 8,000 rakuni 24 tunni pärast (kolmas kahekordistumine)
Punased punktjooned tähistavad iga kahekordistumise sündmust, samas kui sinine kõver näitab pidevat eksponentsiaalset kasvumustrit. See visualiseerimine näitab, kuidas pidev kahekordistumise aeg toodab eksponentsiaalset kasvu, kui see on joonistatud lineaarsel skaalal.
Korduma kippuvad küsimused
Mis on rakkude kahekordistumise aeg?
Rakkude kahekordistumise aeg on aeg, mis on vajalik rakkude populatsiooni kahekordistamiseks. See on oluline parameeter, mida kasutatakse rakkude kasvu kiirusest aru saamiseks bioloogias, mikrobioloogias ja meditsiinilistes uuringutes. Lühem kahekordistumise aeg näitab kiiremat kasvu, samas kui pikem kahekordistumise aeg viitab aeglasemale paljunemisele.
Kuidas erineb kahekordistumise aeg generatsiooni ajast?
Kuigi neid kasutatakse sageli vaheldumisi, viitab kahekordistumise aeg tavaliselt ajale, mis on vajalik populatsiooni rakkude kahekordistamiseks, samas kui generatsiooni aeg viitab konkreetsemalt ajale, mis kulub järjestikuste rakkude jagunemiste vahel individuaalsel rakutasemel. Praktiliselt on need väärtused sünkroniseeritud populatsioonide puhul samad, kuid segatud populatsioonides võivad need veidi erineda.
Kas ma saan arvutada kahekordistumise aega, kui mu rakud ei ole eksponentsiaalses kasvufaasis?
Kahekordistumise aja arvutamine eeldab, et rakud on oma eksponentsiaalses (logaritmilises) kasvufaasis. Kui teie rakud on lag-faasis või statsionaarses faasis, ei kajasta arvutatud kahekordistumise aeg nende tõelist kasvupotentsiaali. Täpsete tulemuste saamiseks veenduge, et mõõtmised tehakse eksponentsiaalse kasvu faasis.
Millised tegurid mõjutavad rakkude kahekordistumise aega?
Paljud tegurid võivad kahekordistumise aega mõjutada, sealhulgas:
- Temperatuur
- Toitainete saadavus
- Hapniku tasemed
- pH
- Kasvufaktorite või inhibiitorite olemasolu
- Rakutüüp ja geneetilised tegurid
- Rakkude tihedus
- Kultuuri vanus
Kuidas ma tean, kas minu arvutus on täpne?
Kõige täpsemate tulemuste saamiseks:
- Veenduge, et rakud on eksponentsiaalses kasvufaasis
- Kasutage järjepidevaid ja täpseid rakkude loendamise meetodeid
- Tehke mitu mõõtmist aja jooksul
- Arvutage kahekordistumise aeg kasvukõvera kalde põhjal (joonistades ln(rakkude arv) vs. aeg)
- Võrrelge oma tulemusi avaldatud väärtustega sarnaste rakutüüpide jaoks
Mis tähendab negatiivne kahekordistumise aeg?
Negatiivne kahekordistumise aeg tähendab matemaatiliselt, et rakkude populatsioon väheneb, mitte ei suurene. See võib juhtuda, kui lõpparv on väiksem kui algne arv, mis viitab rakkude surmale või eksperimentaalsele veale. Kahekordistumise aja valem on mõeldud kasvavatele populatsioonidele, seega peaks negatiivne väärtus tekitama vajaduse teie eksperimentaalsete tingimuste või mõõtmismeetodite ülevaatamiseks.
Kuidas konverteerida kahekordistumise aega ja kasvukiirus?
Kasvukiirus (μ) ja kahekordistumise aeg (Td) on omavahel seotud järgmise valemiga: μ = ln(2)/Td või Td = ln(2)/μ
Näiteks kahekordistumise aeg 20 tundi vastab kasvukiirus ln(2)/20 ≈ 0.035 tunnis.
Kas seda kalkulaatorit saab kasutada mis tahes tüüpi rakkude jaoks?
Jah, kahekordistumise aja valem on rakendatav igasugustele populatsioonidele, mis näitavad eksponentsiaalset kasvu, sealhulgas:
- Bakterirakud
- Pärmi ja seente rakud
- Imetajarakkude liinid
- Taimerakud kultuuris
- Vähirakud
- Algeed ja muud mikroorganismid
Kuidas ma käsitlen väga suuri rakuarve?
Valem töötab võrdselt hästi suurte numbrite, teaduslike märkide või normaliseeritud väärtuste puhul. Näiteks, selle asemel et sisestada 1,000,000 ja 8,000,000 rakku, võiksite kasutada 1 ja 8 (miljonites rakkudes) ja saada sama kahekordistumise aja tulemuse.
Mis vahe on populatsiooni kahekordistumise ajal ja rakutsükli ajal?
Rakutsükli aeg viitab ajale, mis kulub individuaalsel rakul, et lõpetada üks täis kasvutsükkel ja jagunemine, samas kui populatsiooni kahekordistumise aeg mõõdab, kui kiiresti kogu populatsioon kahekordistub. Asünkroonsete populatsioonide puhul ei jagune kõik rakud samal kiirusel, seega on populatsiooni kahekordistumise aeg sageli pikem kui kõige kiiremini jagunevate rakkude rakutsükli aeg.
Viidatud allikad
-
Cooper, S. (2006). Distinguishing between linear and exponential cell growth during the division cycle: Single-cell studies, cell-culture studies, and the object of cell-cycle research. Theoretical Biology and Medical Modelling, 3, 10. https://doi.org/10.1186/1742-4682-3-10
-
Davis, J. M. (2011). Basic Cell Culture: A Practical Approach (2nd ed.). Oxford University Press.
-
Hall, B. G., Acar, H., Nandipati, A., & Barlow, M. (2014). Growth rates made easy. Molecular Biology and Evolution, 31(1), 232-238. https://doi.org/10.1093/molbev/mst187
-
Monod, J. (1949). The growth of bacterial cultures. Annual Review of Microbiology, 3, 371-394. https://doi.org/10.1146/annurev.mi.03.100149.002103
-
Sherley, J. L., Stadler, P. B., & Stadler, J. S. (1995). A quantitative method for the analysis of mammalian cell proliferation in culture in terms of dividing and non-dividing cells. Cell Proliferation, 28(3), 137-144. https://doi.org/10.1111/j.1365-2184.1995.tb00062.x
-
Skipper, H. E., Schabel, F. M., & Wilcox, W. S. (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with "curability" of experimental leukemia. Cancer Chemotherapy Reports, 35, 1-111.
-
Wilson, D. P. (2016). Protracted viral shedding and the importance of modeling infection dynamics when comparing viral loads. Journal of Theoretical Biology, 390, 1-8. https://doi.org/10.1016/j.jtbi.2015.10.036
Kas olete valmis arvutama rakkude kahekordistumise aega oma eksperimendis? Kasutage meie kalkulaatorit ülal, et saada koheseid, täpseid tulemusi, mis aitavad teil paremini mõista oma rakkude kasvudünaamikat. Olgu tegemist üliõpilasega, kes õpib populatsiooni dünaamikat, teadlasega, kes optimeerib kultuuritingimusi, või teadlasega, kes analüüsib kasvupidurdamist, pakub meie tööriist vajalikku teavet.
Tagasiside
Klõpsake tagasiside teatele, et alustada tagasiside andmist selle tööriista kohta
Seotud tööriistad
Avasta rohkem tööriistu, mis võivad olla kasulikud teie töövoos