Z-சோதனை, t-சோதனை மற்றும் கி-சதவீத சோதனை ஆகியவற்றில் ஒரு பக்கம் மற்றும் இரண்டு பக்கம் முக்கிய மதிப்புகளை கண்டறியவும். புள்ளியியல் உத்திகள் சோதனை மற்றும் ஆராய்ச்சி பகுப்பாய்வுக்கு சிறந்தது.
Critical values are essential in statistical hypothesis testing. They define the threshold at which we reject the null hypothesis in favor of the alternative hypothesis. By calculating the critical value, researchers can determine if their test statistic falls within the rejection region and make informed decisions based on their data.
This calculator helps you find the one-tailed and two-tailed critical values for the most commonly used statistical tests, including the Z-test, t-test, and Chi-squared test. It supports various significance levels and degrees of freedom, providing accurate results for your statistical analyses.
Select the Test Type:
Choose the Tail Type:
Enter the Significance Level (( \alpha )):
Enter the Degrees of Freedom (if applicable):
Calculate:
For the standard normal distribution:
Where:
For the t-distribution with ( df ) degrees of freedom:
Where:
For the Chi-squared distribution with ( df ) degrees of freedom:
Where:
The calculator performs the following steps:
Input Validation:
Adjust Significance Level for Tail Type:
Compute Critical Value(s):
Display Results:
Extreme Significance Levels (( \alpha ) near 0 or 1):
Large Degrees of Freedom (( df )):
Small Degrees of Freedom (( df \leq 1 )):
One-tailed vs. Two-tailed Tests:
Critical values are utilized across various domains:
Academic Research:
Quality Assurance:
Healthcare and Medicine:
Finance and Economics:
p-values:
Confidence Intervals:
Bayesian Methods:
Non-parametric Tests:
The development of critical values is intertwined with the evolution of statistical inference:
Early 20th Century:
Ronald Fisher:
Advancements in Computing:
Scenario: A company wants to test if a new process reduces the average production time. They set ( \alpha = 0.05 ).
Solution:
Code Examples:
1import scipy.stats as stats
2
3alpha = 0.05
4Z_c = stats.norm.ppf(1 - alpha)
5print(f"Critical Value (Z_c): {Z_c:.4f}")
6
1// JavaScript example for Z-test critical value
2function calculateZCriticalValue(alpha) {
3 return jStat.normal.inv(1 - alpha, 0, 1);
4}
5
6const alpha = 0.05;
7const Z_c = calculateZCriticalValue(alpha);
8console.log(`Critical Value (Z_c): ${Z_c.toFixed(4)}`);
9
Note: Requires the jStat library for statistical functions.
1' Excel formula for Z-test critical value (one-tailed)
2' In a cell, enter:
3=NORM.S.INV(1 - 0.05)
4
5' Result:
6' Returns 1.6449
7
Scenario: A researcher conducts an experiment with 20 participants (( df = 19 )) and uses ( \alpha = 0.01 ).
Solution:
Code Examples:
1alpha <- 0.01
2df <- 19
3t_c <- qt(1 - alpha / 2, df)
4print(paste("Critical Value (t_c):", round(t_c, 4)))
5
1alpha = 0.01;
2df = 19;
3t_c = tinv(1 - alpha / 2, df);
4fprintf('Critical Value (t_c): %.4f\n', t_c);
5
1// JavaScript example for t-test critical value
2function calculateTCriticalValue(alpha, df) {
3 return jStat.studentt.inv(1 - alpha / 2, df);
4}
5
6const alpha = 0.01;
7const df = 19;
8const t_c = calculateTCriticalValue(alpha, df);
9console.log(`Critical Value (t_c): ${t_c.toFixed(4)}`);
10
Note: Requires the jStat library.
1' Excel formula for t-test critical value (two-tailed)
2' In a cell, enter:
3=T.INV.2T(0.01, 19)
4
5' Result:
6' Returns 2.8609
7
Scenario: An analyst tests the fit of observed data with expected frequencies across 5 categories (( df = 4 )) at ( \alpha = 0.05 ).
Solution:
Code Examples:
1import scipy.stats as stats
2
3alpha = 0.05
4df = 4
5chi2_lower = stats.chi2.ppf(alpha / 2, df)
6chi2_upper = stats.chi2.ppf(1 - alpha / 2, df)
7print(f"Lower Critical Value: {chi2_lower:.4f}")
8print(f"Upper Critical Value: {chi2_upper:.4f}")
9
1alpha = 0.05;
2df = 4;
3chi2_lower = chi2inv(alpha / 2, df);
4chi2_upper = chi2inv(1 - alpha / 2, df);
5fprintf('Lower Critical Value: %.4f\n', chi2_lower);
6fprintf('Upper Critical Value: %.4f\n', chi2_upper);
7
1// JavaScript example for Chi-squared test critical values
2function calculateChiSquaredCriticalValues(alpha, df) {
3 const lower = jStat.chisquare.inv(alpha / 2, df);
4 const upper = jStat.chisquare.inv(1 - alpha / 2, df);
5 return { lower, upper };
6}
7
8const alpha = 0.05;
9const df = 4;
10const chi2_vals = calculateChiSquaredCriticalValues(alpha, df);
11console.log(`Lower Critical Value: ${chi2_vals.lower.toFixed(4)}`);
12console.log(`Upper Critical Value: ${chi2_vals.upper.toFixed(4)}`);
13
Note: Requires the jStat library.
1' Excel formulas for Chi-squared test critical values (two-tailed)
2' Lower critical value (in a cell):
3=CHISQ.INV(0.025, 4)
4
5' Upper critical value (in another cell):
6=CHISQ.INV(0.975, 4)
7
8' Results:
9' Lower Critical Value: 0.7107
10' Upper Critical Value: 11.1433
11
Scenario: A test is conducted with a very small significance level ( \alpha = 0.0001 ) and ( df = 1 ).
Solution:
For a one-tailed t-test:
The critical value approaches a very large number.
Code Example (Python):
1import scipy.stats as stats
2
3alpha = 0.0001
4df = 1
5t_c = stats.t.ppf(1 - alpha, df)
6print(f"Critical Value (t_c): {t_c}")
7
Result:
The output will show a very large critical value, indicating that with such a small ( \alpha ) and low ( df ), the critical value is extremely high, potentially approaching infinity. This exemplifies how extreme inputs can lead to computational challenges.
Handling in the Calculator:
The calculator will return 'Infinity' or 'Undefined' for such cases and advise the user to consider adjusting the significance level or using alternative methods.
Understanding critical values is aided by visualizing the distribution curves and shaded rejection regions.
An SVG diagram illustrating the standard normal distribution with the critical value(s) marked. The area beyond the critical value represents the rejection region. The x-axis represents the z-score, and the y-axis represents the probability density function f(z).
An SVG diagram showing the t-distribution for a specified degrees of freedom with the critical value(s) marked. Notably, the t-distribution has heavier tails compared to the normal distribution.
An SVG diagram depicting the Chi-squared distribution with lower and upper critical values marked for a two-tailed test. The distribution is skewed to the right.
Note: The SVG diagrams are embedded in the content to enhance understanding. Each diagram is accurately labeled, and colors are chosen to be complementary to Tailwind CSS.
Pearson, K. (1900). On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to Have Arisen from Random Sampling. Philosophical Magazine Series 5, 50(302), 157–175. Link
Student (Gosset, W. S.) (1908). The Probable Error of a Mean. Biometrika, 6(1), 1–25. Link
Fisher, R. A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd.
NIST/SEMATECH e-Handbook of Statistical Methods. Critical Values. Link
Wikipedia. Critical Value. Link
உங்கள் பணிப்பாக்கிலுக்கு பயனுள்ள மேலும் பயனுள்ள கருவிகளைக் கண்டறியவும்