Fanya aina zote za t-tests: t-test ya sampuli moja, t-test ya sampuli mbili, na t-test zilizounganishwa. Kihesabu hiki kinakuruhusu kufanya upimaji wa nadharia ya takwimu kwa maana, kusaidia katika uchambuzi wa data na tafsiri ya matokeo.
t-test ni chombo muhimu cha takwimu kinachotumika kubaini ikiwa kuna tofauti muhimu kati ya maana za vikundi. Inatumika sana katika nyanja mbalimbali kama vile saikolojia, tiba, na biashara kwa ajili ya kupima dhana. Kihesabu hiki kinakuruhusu kufanya aina zote za t-tests:
Chagua Aina ya T-Test:
Ingiza Maingizo Yanayohitajika:
Kwa T-Test ya Sampuli Moja:
Kwa T-Test ya Sampuli Mbili:
Kwa T-Test ya Kulinganisha:
Weka Kiwango cha Muhimu ():
Chagua Mwelekeo wa Jaribio:
Bonyeza Kitufe cha "Hesabu":
Kihesabu kitaonyesha:
Kabla ya kutumia t-test, hakikisha kuwa dhamira zifuatazo zimekamilika:
T-statistiki inakokotolewa kama:
Kiwango cha pamoja ():
Kihesabu kinafanya hatua zifuatazo:
Ingawa t-tests ni zenye nguvu, zina dhamira ambazo huenda zisikamilike kila wakati. Mbadala zinajumuisha:
T-test ilitengenezwa na William Sealy Gosset mwaka 1908, ambaye alichapisha chini ya jina la utani "Student" wakati akifanya kazi katika kiwanda cha Guinness huko Dublin. Jaribio hili lilipangwa kufuatilia ubora wa stout kwa kubaini ikiwa sampuli za kundi zilikuwa zinafanana na viwango vya kiwanda. Kutokana na makubaliano ya siri, Gosset alitumia jina la utani "Student," na kusababisha neno "t-test ya mwanafunzi."
Kwa muda, t-test imekuwa msingi katika uchambuzi wa takwimu, inafundishwa sana na kutumika katika nyanja mbalimbali za kisayansi. Ilifungua njia kwa maendeleo ya mbinu za takwimu zenye ugumu zaidi na ni msingi katika uwanja wa takwimu za uhamasishaji.
Hapa kuna mifano ya msimbo kwa ajili ya kufanya T-Test ya Sampuli Moja katika lugha mbalimbali za programu:
1' T-Test ya Sampuli Moja katika Excel VBA
2Sub OneSampleTTest()
3 Dim sampleData As Range
4 Set sampleData = Range("A1:A9") ' Badilisha na eneo lako la data
5 Dim hypothesizedMean As Double
6 hypothesizedMean = 50 ' Badilisha na maana yako inayodhaniwa
7
8 Dim sampleMean As Double
9 Dim sampleStdDev As Double
10 Dim sampleSize As Integer
11 Dim tStat As Double
12
13 sampleMean = Application.WorksheetFunction.Average(sampleData)
14 sampleStdDev = Application.WorksheetFunction.StDev_S(sampleData)
15 sampleSize = sampleData.Count
16
17 tStat = (sampleMean - hypothesizedMean) / (sampleStdDev / Sqr(sampleSize))
18
19 MsgBox "T-Statistiki: " & Format(tStat, "0.00")
20End Sub
21
1## T-Test ya Sampuli Moja katika R
2sample_data <- c(51, 49, 52, 48, 50, 47, 53, 49, 51)
3t_test_result <- t.test(sample_data, mu = 50)
4print(t_test_result)
5
1import numpy as np
2from scipy import stats
3
4## T-Test ya Sampuli Moja katika Python
5sample_data = [51, 49, 52, 48, 50, 47, 53, 49, 51]
6t_statistic, p_value = stats.ttest_1samp(sample_data, 50)
7print(f"T-Statistiki: {t_statistic:.2f}, P-Thamani: {p_value:.4f}")
8
1// T-Test ya Sampuli Moja katika JavaScript
2function oneSampleTTest(sample, mu0) {
3 const n = sample.length;
4 const mean = sample.reduce((a, b) => a + b) / n;
5 const sd = Math.sqrt(sample.map(x => (x - mean) ** 2).reduce((a, b) => a + b) / (n - 1));
6 const t = (mean - mu0) / (sd / Math.sqrt(n));
7 return t;
8}
9
10// Matumizi ya mfano:
11const sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
12const tStatistic = oneSampleTTest(sampleData, 50);
13console.log(`T-Statistiki: ${tStatistic.toFixed(2)}`);
14
1% T-Test ya Sampuli Moja katika MATLAB
2sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
3[h, p, ci, stats] = ttest(sampleData, 50);
4disp(['T-Statistiki: ', num2str(stats.tstat)]);
5disp(['P-Thamani: ', num2str(p)]);
6
1import org.apache.commons.math3.stat.inference.TTest;
2
3public class OneSampleTTest {
4 public static void main(String[] args) {
5 double[] sampleData = {51, 49, 52, 48, 50, 47, 53, 49, 51};
6 TTest tTest = new TTest();
7 double mu = 50;
8 double tStatistic = tTest.t(mu, sampleData);
9 double pValue = tTest.tTest(mu, sampleData);
10 System.out.printf("T-Statistiki: %.2f%n", tStatistic);
11 System.out.printf("P-Thamani: %.4f%n", pValue);
12 }
13}
14
1using System;
2using MathNet.Numerics.Statistics;
3
4class OneSampleTTest
5{
6 static void Main()
7 {
8 double[] sampleData = {51, 49, 52, 48, 50, 47, 53, 49, 51};
9 double mu0 = 50;
10 int n = sampleData.Length;
11 double mean = Statistics.Mean(sampleData);
12 double stdDev = Statistics.StandardDeviation(sampleData);
13 double tStatistic = (mean - mu0) / (stdDev / Math.Sqrt(n));
14 Console.WriteLine($"T-Statistiki: {tStatistic:F2}");
15 }
16}
17
1package main
2
3import (
4 "fmt"
5 "math"
6)
7
8func oneSampleTTest(sample []float64, mu0 float64) float64 {
9 n := float64(len(sample))
10 var sum, mean, sd float64
11
12 for _, v := range sample {
13 sum += v
14 }
15 mean = sum / n
16
17 for _, v := range sample {
18 sd += math.Pow(v - mean, 2)
19 }
20 sd = math.Sqrt(sd / (n - 1))
21
22 t := (mean - mu0) / (sd / math.Sqrt(n))
23 return t
24}
25
26func main() {
27 sample_data := []float64{51, 49, 52, 48, 50, 47, 53, 49, 51}
28 tStatistic := oneSampleTTest(sample_data, 50.0)
29 fmt.Printf("T-Statistiki: %.2f\n", tStatistic)
30}
31
1import Foundation
2
3func oneSampleTTest(sample: [Double], mu0: Double) -> Double {
4 let n = Double(sample.count)
5 let mean = sample.reduce(0, +) / n
6 let sd = sqrt(sample.map { pow($0 - mean, 2) }.reduce(0, +) / (n - 1))
7 let t = (mean - mu0) / (sd / sqrt(n))
8 return t
9}
10
11let sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51]
12let tStatistic = oneSampleTTest(sample: sampleData, mu0: 50)
13print(String(format: "T-Statistiki: %.2f", tStatistic))
14
1<?php
2function oneSampleTTest($sample, $mu0) {
3 $n = count($sample);
4 $mean = array_sum($sample) / $n;
5 $sd = sqrt(array_sum(array_map(function($x) use ($mean) {
6 return pow($x - $mean, 2);
7 }, $sample)) / ($n - 1));
8 $t = ($mean - $mu0) / ($sd / sqrt($n));
9 return $t;
10}
11
12$sampleData = [51, 49, 52, 48, 50, 47, 53, 49, 51];
13$tStatistic = oneSampleTTest($sampleData, 50);
14echo "T-Statistiki: " . number_format($tStatistic, 2);
15?>
16
1## T-Test ya Sampuli Moja katika Ruby
2def one_sample_t_test(sample, mu0)
3 n = sample.size
4 mean = sample.sum(0.0) / n
5 sd = Math.sqrt(sample.map { |x| (x - mean)**2 }.sum / (n - 1))
6 t = (mean - mu0) / (sd / Math.sqrt(n))
7 t
8end
9
10sample_data = [51, 49, 52, 48, 50, 47, 53, 49, 51]
11t_statistic = one_sample_t_test(sample_data, 50)
12puts format("T-Statistiki: %.2f", t_statistic)
13
1// T-Test ya Sampuli Moja katika Rust
2fn one_sample_t_test(sample: &Vec<f64>, mu0: f64) -> f64 {
3 let n = sample.len() as f64;
4 let mean: f64 = sample.iter().sum::<f64>() / n;
5 let sd = (sample.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / (n - 1.0)).sqrt();
6 let t = (mean - mu0) / (sd / n.sqrt());
7 t
8}
9
10fn main() {
11 let sample_data = vec![51.0, 49.0, 52.0, 48.0, 50.0, 47.0, 53.0, 49.0, 51.0];
12 let t_statistic = one_sample_t_test(&sample_data, 50.0);
13 println!("T-Statistiki: {:.2}", t_statistic);
14}
15
Tatizo: Mtengenezaji anadai kuwa maisha ya wastani ya betri ni masaa 50. Kikundi cha watumiaji kinajaribu betri 9 na kurekodi maisha yafuatayo (katika masaa):
Je, kuna ushahidi katika kiwango cha umuhimu 0.05 kuonyesha kwamba maisha ya wastani ya betri yanatofautiana na masaa 50?
Suluhisho:
Tangaza Dhana:
Hesabu Maana ya Sampuli ():
Hesabu Kiwango cha Kawaida cha Sampuli ():
Hesabu T-Statistiki:
Hali za Uhuru:
Pata P-Thamani:
Hitimisho:
Gundua zana zaidi ambazo zinaweza kuwa na manufaa kwa mtiririko wako wa kazi