Z ležanjem konusa s ploskvijo lahko dobite mnoge zanimive krivulje, konične odseke! Preizkusite naš kalkulator koničnih odsekov, da spoznate vrste koničnih odsekov in kako izračunati njihovo ekscentričnost ter še več!
S samo rezanjem stožca s ploskvijo lahko dobite številne zanimive krivulje, znane kot konični odseki. Te vključujejo krog, elipso, parabolo in hiperbolo. Konični odseki so temeljni v matematiki in se pojavljajo na različnih področjih, kot so astronomija, fizika, inženirstvo in arhitektura.
Naš kalkulator koničnih odsekov vam omogoča raziskovanje teh fascinantnih krivulj z izračunom njihove ekscentričnosti in derivacijo njihovih standardnih enačb na podlagi vaših vhodnih parametrov. Potopite se v svet koničnih odsekov in odkrijte njihove edinstvene lastnosti in aplikacije.
Izberite vrsto koničnega odseka:
Vnesite potrebne parametre:
Kliknite "Izračunaj" za izračun:
Preglejte rezultate prikazane pod kalkulatorjem.
Kalkulator izvaja naslednje preglede na vhodnih podatkih uporabnika:
Če so podani neveljavni vnosi, bo prikazano sporočilo o napaki, izračuni pa bodo ustavljeni, dokler ne bodo vneseni veljavni vnosi.
Ekscentričnost () je ključni parameter, ki definira obliko koničnega odseka in kaže, kako zelo odstopa od kroga.
Tukaj je, kako kalkulator izračuna ekscentričnost in enačbe:
Za krog:
Za elipso:
Za parabolo:
Za hiperbolo:
Robni primeri:
Konični odseki imajo široko paleto aplikacij:
Astronomija:
Fizika:
Inženirstvo:
Arhitektura:
Optika:
Druge krivulje in oblike bi lahko razmislili glede na aplikacijo:
Raziskovanje koničnih odsekov sega več kot dva tisoč let nazaj:
Konični odseki so igrali ključno vlogo pri napredku matematike, fizike in inženirstva ter vplivali na sodobne tehnologije in znanstveno razumevanje.
1' VBA funkcija za izračun ekscentričnosti hiperbole
2Function HyperbolaEccentricity(a As Double, b As Double) As Double
3 If a <= 0 Or b <= 0 Then
4 HyperbolaEccentricity = CVErr(xlErrValue)
5 ElseIf a <= b Then
6 HyperbolaEccentricity = CVErr(xlErrValue)
7 Else
8 HyperbolaEccentricity = Sqr(1 + (b ^ 2) / (a ^ 2))
9 End If
10End Function
11' Uporaba v Excelu:
12' =HyperbolaEccentricity(5, 3)
13
1import math
2
3def ellipse_eccentricity(a, b):
4 if a <= 0 or b <= 0 or b > a:
5 raise ValueError("Neveljavni parametri: Prepričajte se, da je a >= b > 0")
6 e = math.sqrt(1 - (b ** 2) / (a ** 2))
7 return e
8
9## Primer uporabe:
10a = 5.0 # Polovična glavna os
11b = 3.0 # Polovična stranska os
12ecc = ellipse_eccentricity(a, b)
13print(f"Ekscentričnost elipse: {ecc:.4f}")
14
1function calculateEccentricity(a, b) {
2 if (a <= 0 || b <= 0 || b > a) {
3 throw new Error("Neveljavni parametri: a mora biti >= b > 0");
4 }
5 const e = Math.sqrt(1 - (b ** 2) / (a ** 2));
6 return e;
7}
8
9// Primer uporabe:
10const a = 5;
11const b = 3;
12const eccentricity = calculateEccentricity(a, b);
13console.log(`Ekscentričnost: ${eccentricity.toFixed(4)}`);
14
1% MATLAB skripta za izračun ekscentričnosti parabole
2% Za parabolo je ekscentričnost vedno 1
3e = 1;
4fprintf('Ekscentričnost parabole: %.4f\n', e);
5
1using System;
2
3class ConicSection
4{
5 public static double ParabolaEccentricity()
6 {
7 return 1.0;
8 }
9
10 static void Main()
11 {
12 double eccentricity = ParabolaEccentricity();
13 Console.WriteLine($"Ekscentričnost parabole: {eccentricity}");
14 }
15}
16
1public class ConicSectionCalculator {
2 public static double calculateCircleEccentricity() {
3 return 0.0;
4 }
5
6 public static void main(String[] args) {
7 double e = calculateCircleEccentricity();
8 System.out.printf("Ekscentričnost kroga: %.4f%n", e);
9 }
10}
11
1fn hyperbola_eccentricity(a: f64, b: f64) -> Result<f64, &'static str> {
2 if a <= 0.0 || b <= 0.0 || a <= b {
3 Err("Neveljavni parametri: a mora biti > b > 0")
4 } else {
5 Ok((1.0 + (b.powi(2) / a.powi(2))).sqrt())
6 }
7}
8
9fn main() {
10 let a = 5.0;
11 let b = 3.0;
12 match hyperbola_eccentricity(a, b) {
13 Ok(eccentricity) => println!("Ekscentričnost: {:.4}", eccentricity),
14 Err(e) => println!("Napaka: {}", e),
15 }
16}
17
Krog:
Elipsa:
Parabola:
Hiperbola:
Odkrijte več orodij, ki bi lahko bila koristna za vaš delovni proces