Hesabu vipimo sahihi vya mviringo kwa miradi ya ujenzi. Ingiza radius, span, au rise ili kubaini vipimo vyote ikiwa ni pamoja na urefu wa arc na eneo la mviringo kwa mviringo kamili.
Hesabu ya Arch ni chombo muhimu kwa wasanifu, wahandisi, wajenzi, na wapenzi wa DIY wanaohitaji kubaini vipimo sahihi kwa ajili ya kujenga arches. Hesabu hii inarahisisha uhusiano tata wa kimaadili kati ya vipimo muhimu vya arch: radius, span, na rise. Kwa kuelewa na kuhesabu kwa usahihi vigezo hivi, unaweza kubuni arches zenye muundo thabiti na mvuto wa kisasa kwa ajili ya milango, madirisha, madaraja, na vipengele vingine vya usanifu.
Arches zimekuwa vipengele vya msingi katika usanifu kwa maelfu ya miaka, zikigawa uzito na kuunda nafasi za wazi zenye mvuto. Iwe unarejesha jengo la kihistoria, kubuni muundo wa kisasa, au kufanya mradi wa kuboresha nyumba, vipimo sahihi vya arch ni muhimu kwa ujenzi wenye mafanikio. Hesabu hii inondoa kazi ya kukisia na hesabu ngumu za mikono, ikikuruhusu kuzingatia muundo na mchakato wa ujenzi.
Kabla ya kuingia kwenye hesabu, ni muhimu kuelewa vipimo muhimu vya arch:
Hesabu ya arch inatumia mifumo ifuatayo kubaini uhusiano kati ya radius, span, na rise:
Mifumo hii inatumika wakati:
Mifumo hii inatumika wakati:
Mifumo hii inatumika wakati:
Ambapo θ (theta) ni angle kuu katika radians:
Ambapo θ ni angle kuu kama ilivyoelezwa hapo juu.
Hesabu yetu ya arch inatoa modes tatu za hesabu ili kukidhi hali tofauti unazoweza kukutana nazo katika miradi yako. Fuata hatua hizi kupata vipimo sahihi vya arch:
Baada ya kufanya hesabu, utapata matokeo yafuatayo:
Vipimo hivi ni muhimu kwa:
Hesabu inatekeleza vikwazo hivi vya kimaadili ili kuhakikisha vipimo halali vya arch:
Ikiwa utaingiza thamani zinazokiuka vikwazo hivi, hesabu itatoa ujumbe wa kosa na kukuelekeza kuelekea pembejeo halali.
Hesabu za arch ni muhimu katika nyanja nyingi na matumizi:
Ingawa hesabu hii inazingatia arches za duara, aina zingine za arch ni pamoja na:
Kila aina ina njia zake za hesabu na mali za muundo, zinazofaa kwa matumizi tofauti na mapendeleo ya kisasa.
Arch ina historia tajiri inayoshughulikia maelfu ya miaka na ustaarabu mbalimbali:
Arches za kwanza zilionekana katika usanifu wa Mesopotamia karibu 2500 BCE. Hizi kwa kawaida zilikuwa zikiundwa kwa kutumia mbinu za corbelling badala ya arches halisi. Wamisri wa kale pia walitumia arches za msingi katika miundo ya chini ya ardhi.
Warumi walikamilisha arch ya semicircular na kuitumia kwa wingi katika usanifu wao. Maendeleo muhimu ni pamoja na:
Kipindi cha Kati kiliona maendeleo ya aina za arch, hasa:
Nyakati hizi ziliona kurudi kwa fomu za jadi zikiwa na:
Usanifu wa kisasa unaendelea kutumia arches kwa:
Katika historia yote, kuhesabu kwa usahihi vipimo vya arch kumekuwa muhimu kwa uthabiti wa muundo na ulinganifu wa kisasa.
Hapa kuna utekelezaji wa mifumo ya hesabu ya arch katika lugha mbalimbali za programu:
1' Excel VBA Function for Arch Calculations
2Function CalculateRise(radius As Double, span As Double) As Double
3 ' Check constraints
4 If span > 2 * radius Then
5 CalculateRise = CVErr(xlErrValue)
6 Else
7 CalculateRise = radius - Sqr(radius * radius - (span * span) / 4)
8 End If
9End Function
10
11Function CalculateRadius(span As Double, rise As Double) As Double
12 CalculateRadius = (span * span) / (8 * rise) + (rise / 2)
13End Function
14
15Function CalculateSpan(radius As Double, rise As Double) As Double
16 ' Check constraints
17 If rise > radius Then
18 CalculateSpan = CVErr(xlErrValue)
19 Else
20 CalculateSpan = 2 * Sqr(2 * radius * rise - rise * rise)
21 End If
22End Function
23
24Function CalculateArcLength(radius As Double, span As Double) As Double
25 Dim theta As Double
26 theta = 2 * Application.Asin(span / (2 * radius))
27 CalculateArcLength = radius * theta
28End Function
29
1import math
2
3def calculate_rise(radius, span):
4 """Calculate the rise of an arch given radius and span."""
5 if span > 2 * radius:
6 raise ValueError("Span cannot be greater than twice the radius")
7 return radius - math.sqrt(radius**2 - (span/2)**2)
8
9def calculate_radius(span, rise):
10 """Calculate the radius of an arch given span and rise."""
11 return (span**2) / (8 * rise) + (rise / 2)
12
13def calculate_span(radius, rise):
14 """Calculate the span of an arch given radius and rise."""
15 if rise > radius:
16 raise ValueError("Rise cannot be greater than radius")
17 return 2 * math.sqrt(2 * radius * rise - rise**2)
18
19def calculate_arc_length(radius, span):
20 """Calculate the arc length of an arch."""
21 theta = 2 * math.asin(span / (2 * radius))
22 return radius * theta
23
24def calculate_arch_area(radius, span, rise):
25 """Calculate the area of an arch segment."""
26 theta = 2 * math.asin(span / (2 * radius))
27 sector_area = 0.5 * radius**2 * theta
28 triangle_area = 0.5 * span * (radius - rise)
29 return sector_area - triangle_area
30
1/**
2 * Calculate the rise of an arch given radius and span
3 */
4function calculateRise(radius, span) {
5 if (span > 2 * radius) {
6 throw new Error("Span cannot be greater than twice the radius");
7 }
8 return radius - Math.sqrt(radius**2 - (span/2)**2);
9}
10
11/**
12 * Calculate the radius of an arch given span and rise
13 */
14function calculateRadius(span, rise) {
15 return (span**2) / (8 * rise) + (rise / 2);
16}
17
18/**
19 * Calculate the span of an arch given radius and rise
20 */
21function calculateSpan(radius, rise) {
22 if (rise > radius) {
23 throw new Error("Rise cannot be greater than radius");
24 }
25 return 2 * Math.sqrt(2 * radius * rise - rise**2);
26}
27
28/**
29 * Calculate the arc length of an arch
30 */
31function calculateArcLength(radius, span) {
32 const theta = 2 * Math.asin(span / (2 * radius));
33 return radius * theta;
34}
35
36/**
37 * Calculate the area of an arch segment
38 */
39function calculateArchArea(radius, span, rise) {
40 const theta = 2 * Math.asin(span / (2 * radius));
41 const sectorArea = 0.5 * radius**2 * theta;
42 const triangleArea = 0.5 * span * (radius - rise);
43 return sectorArea - triangleArea;
44}
45
1public class ArchCalculator {
2 /**
3 * Calculate the rise of an arch given radius and span
4 */
5 public static double calculateRise(double radius, double span) {
6 if (span > 2 * radius) {
7 throw new IllegalArgumentException("Span cannot be greater than twice the radius");
8 }
9 return radius - Math.sqrt(radius * radius - (span * span) / 4);
10 }
11
12 /**
13 * Calculate the radius of an arch given span and rise
14 */
15 public static double calculateRadius(double span, double rise) {
16 return (span * span) / (8 * rise) + (rise / 2);
17 }
18
19 /**
20 * Calculate the span of an arch given radius and rise
21 */
22 public static double calculateSpan(double radius, double rise) {
23 if (rise > radius) {
24 throw new IllegalArgumentException("Rise cannot be greater than radius");
25 }
26 return 2 * Math.sqrt(2 * radius * rise - rise * rise);
27 }
28
29 /**
30 * Calculate the arc length of an arch
31 */
32 public static double calculateArcLength(double radius, double span) {
33 double theta = 2 * Math.asin(span / (2 * radius));
34 return radius * theta;
35 }
36
37 /**
38 * Calculate the area of an arch segment
39 */
40 public static double calculateArchArea(double radius, double span, double rise) {
41 double theta = 2 * Math.asin(span / (2 * radius));
42 double sectorArea = 0.5 * radius * radius * theta;
43 double triangleArea = 0.5 * span * (radius - rise);
44 return sectorArea - triangleArea;
45 }
46}
47
Hapa kuna mifano ya vitendo ya hesabu za arch kwa hali za kawaida:
Iwe:
Hesabu:
Iwe:
Hesabu:
Iwe:
Hesabu:
Rise inarejelea hasa umbali wa wima kutoka kwenye mstari wa springing (mstari wa usawa unaounganisha mwisho wawili) hadi sehemu ya juu ya arch ya intrados (curve ya ndani). Neno height linaweza wakati mwingine kurejelea jumla ya urefu wa ufunguzi wa arch, ikiwa ni pamoja na vipengele vya wima chini ya mstari wa springing.
Hesabu hii imeundwa mahsusi kwa arches za duara (arches zinazoundwa kutoka sehemu ya duara). Haitaweza kutoa hesabu sahihi kwa aina nyingine za arch kama vile eliptiki, parabolic, au Gothic, ambazo zinafuata curves tofauti za kimaadili.
Katika arch ya semicircular kamili, radius ni sawa na nusu ya span, na rise inalingana na radius. Hii inaunda nusu-duara ambapo uwiano wa rise hadi span ni 0.5.
Uwiano bora wa rise hadi span unategemea matumizi yako maalum:
Hii ni kikwazo cha kimaadili cha arches za duara. Wakati span inalingana na mara mbili ya radius, una arch ya semicircle (nusu-duara). Ni kimaadili haiwezekani kuunda arch ya duara yenye span kubwa zaidi ya mara mbili ya radius yake.
Rise inawakilisha urefu kutoka kwenye mstari wa springing hadi sehemu ya juu ya arch. Katika arch ya duara, umbali huu hauwezi kuzidi radius ya duara. Ikiwa rise inalingana na radius, unakuwa na arch ya semicircular.
Ili kutathmini vifaa:
Arch ya catenary (inayoendelea kufuata curve ya chain iliyoanguka) ni kimsingi yenye nguvu zaidi, kwani inasambaza kwa usahihi nguvu za compressive. Hata hivyo, arches za duara na parabolic pia zinaweza kuwa na nguvu sana wakati zimeundwa vizuri kwa hali zao maalum za mzigo.
Hesabu hii inatoa vipimo vya profile ya arch ya 2D. Kwa miundo ya 3D kama vile mabomba ya barrel, unaweza kutumia hesabu hizi kwenye sehemu ya msalaba kisha kupanua muundo katika dimension ya tatu.
Allen, E., & Iano, J. (2019). Fundamentals of Building Construction: Materials and Methods. John Wiley & Sons.
Beckmann, P. (1994). Structural Aspects of Building Conservation. McGraw-Hill Education.
Ching, F. D. K. (2014). Building Construction Illustrated. John Wiley & Sons.
Fletcher, B. (1996). A History of Architecture on the Comparative Method. Architectural Press.
Heyman, J. (1995). The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press.
Salvadori, M. (1990). Why Buildings Stand Up: The Strength of Architecture. W. W. Norton & Company.
Sandaker, B. N., Eggen, A. P., & Cruvellier, M. R. (2019). The Structural Basis of Architecture. Routledge.
Sasa kwamba umeelewa hisabati na umuhimu wa vipimo vya arch, jaribu hesabu yetu kupata vipimo sahihi kwa mradi wako ujao. Iwe unabuni mlango mkubwa, ukirejesha muundo wa kihistoria, au kuunda kipengele cha bustani, vipimo sahihi vya arch viko kwa kubonyeza chache tu.
Kwa zaidi ya hesabu za usanifu na ujenzi, chunguza zana zetu nyingine zilizoundwa ili kurahisisha hesabu ngumu na kukusaidia kufikia matokeo ya kitaalamu.
Gundua zana zaidi ambazo zinaweza kuwa na manufaa kwa mtiririko wako wa kazi