எங்கள் விரைவான மற்றும் நம்பகமான கணக்கீட்டாளருடன் உங்கள் A/B சோதனைகளின் புள்ளியியல் முக்கியத்துவத்தை எளிதாக தீர்மானிக்கவும். உங்கள் டிஜிட்டல் மார்க்கெட்டிங், தயாரிப்பு வளர்ச்சி மற்றும் பயனர் அனுபவம் மேம்பாட்டிற்கான தரவுகளை அடிப்படையாகக் கொண்டு முடிவுகளை எடுக்க உடனடி முடிவுகளைப் பெறுங்கள். வலைத்தளங்கள், மின்னஞ்சல்கள் மற்றும் மொபைல் செயலிகள் ஆகியவற்றிற்கான சிறந்தது.
A/B ಪರೀಕ್ಷೆ ಡಿಜಿಟಲ್ ಮಾರ್ಕೆಟಿಂಗ್, ಉತ್ಪನ್ನ ಅಭಿವೃದ್ಧಿ ಮತ್ತು ಬಳಕೆದಾರ ಅನುಭವವನ್ನು ಸುಧಾರಿಸಲು ಪ್ರಮುಖ ವಿಧಾನವಾಗಿದೆ. ಇದು ವೆಬ್ಪೇಜ್ ಅಥವಾ ಅಪ್ಲಿಕೇಶನ್ನ ಎರಡು ಆವೃತ್ತಿಗಳನ್ನು ಪರಸ್ಪರ ಹೋಲಿಸುವ ಮೂಲಕ ಯಾವುದು ಉತ್ತಮವಾಗಿ ಕಾರ್ಯನಿರ್ವಹಿಸುತ್ತದೆ ಎಂಬುದನ್ನು ನಿರ್ಧರಿಸಲು ನೆರವಾಗುತ್ತದೆ. ನಮ್ಮ A/B ಪರೀಕ್ಷಾ ಕ್ಯಾಲ್ಕುಲೇಟರ್ ನಿಮ್ಮ ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶಗಳ ಸಂಖ್ಯಾತ್ಮಕ ಮಹತ್ವವನ್ನು ನಿರ್ಧರಿಸಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ, ನೀವು ಡೇಟಾ ಆಧಾರಿತ ನಿರ್ಧಾರಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವಂತೆ ಖಚಿತಪಡಿಸುತ್ತದೆ.
A/B ಪರೀಕ್ಷಾ ಕ್ಯಾಲ್ಕುಲೇಟರ್ ಎರಡು ಗುಂಪುಗಳ (ನಿಯಂತ್ರಣ ಮತ್ತು ಪರಿವರ್ತನೆ) ನಡುವಿನ ವ್ಯತ್ಯಾಸವು ಮಹತ್ವಪೂರ್ಣವೇ ಎಂಬುದನ್ನು ನಿರ್ಧರಿಸಲು ಸಂಖ್ಯಾತ್ಮಕ ವಿಧಾನಗಳನ್ನು ಬಳಸುತ್ತದೆ. ಈ ಲೆಕ್ಕಾಚಾರದ ಕೇಂದ್ರದಲ್ಲಿ z-ಸ್ಕೋರ್ ಮತ್ತು ಅದರ ಸಂಬಂಧಿತ p-ಮೌಲ್ಯವನ್ನು ಲೆಕ್ಕಹಾಕುವುದು ಒಳಗೊಂಡಿದೆ.
ಪ್ರತಿ ಗುಂಪಿನ ಪರಿವರ್ತನಾ ದರಗಳನ್ನು ಲೆಕ್ಕಹಾಕಿ:
ಮತ್ತು
ಅಲ್ಲಿ:
ಸಮಾನಿತ ಪ್ರಮಾಣವನ್ನು ಲೆಕ್ಕಹಾಕಿ:
ಮಾನದಂಡ ದೋಷವನ್ನು ಲೆಕ್ಕಹಾಕಿ:
z-ಸ್ಕೋರ್ ಅನ್ನು ಲೆಕ್ಕಹಾಕಿ:
p-ಮೌಲ್ಯವನ್ನು ಲೆಕ್ಕಹಾಕಿ:
p-ಮೌಲ್ಯವು ಪ್ರಮಾಣಿತ ನಾರ್ಮಲ್ ವಿತರಣೆಯ ಸಮಕಾಲೀನ ವಿತರಣಾ ಕಾರ್ಯವನ್ನು ಬಳಸಿಕೊಂಡು ಲೆಕ್ಕಹಾಕಲಾಗುತ್ತದೆ. ಬಹಳಷ್ಟು ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಭಾಷೆಗಳಲ್ಲಿ, ಇದು ನಿರ್ಮಿತ ಕಾರ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಮಾಡಲಾಗುತ್ತದೆ.
ಸಂಖ್ಯಾತ್ಮಕ ಮಹತ್ವವನ್ನು ನಿರ್ಧರಿಸಿ:
ಆಯ್ಕೆ ಮಾಡಿದ ಸಂಖ್ಯಾತ್ಮಕ ಮಟ್ಟ (ಸಾಮಾನ್ಯವಾಗಿ 0.05) ಕ್ಕಿಂತ ಕಡಿಮೆವಾದ p-ಮೌಲ್ಯವಿದ್ದರೆ, ಫಲಿತಾಂಶವನ್ನು ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣವೆಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ.
ಈ ವಿಧಾನವು ಸಾಮಾನ್ಯ ವಿತರಣೆಯನ್ನು ಊಹಿಸುತ್ತದೆ, ಇದು ಸಾಮಾನ್ಯವಾಗಿ ದೊಡ್ಡ ಮಾದರಿ ಗಾತ್ರಗಳಿಗೆ ಮಾನ್ಯವಾಗಿದೆ. ಬಹಳ ಚಿಕ್ಕ ಮಾದರಿ ಗಾತ್ರಗಳು ಅಥವಾ ತೀವ್ರ ಪರಿವರ್ತನಾ ದರಗಳಿಗಾಗಿ, ಹೆಚ್ಚು ಮುಂದುವರಿದ ಸಂಖ್ಯಾತ್ಮಕ ವಿಧಾನಗಳು ಅಗತ್ಯವಿರಬಹುದು.
A/B ಪರೀಕ್ಷೆಗೆ ಹಲವು ಉದ್ಯಮಗಳಲ್ಲಿ ವ್ಯಾಪಕವಾಗಿ ಬಳಸುವ ಅನೇಕ ಅನ್ವಯಗಳು ಇವೆ:
A/B ಪರೀಕ್ಷೆಯು ವ್ಯಾಪಕವಾಗಿ ಬಳಸಲಾಗುವಾಗ, ಹೋಲಿಸುವ ಪರೀಕ್ಷೆಗಾಗಿ ಪರ್ಯಾಯ ವಿಧಾನಗಳಿವೆ:
A/B ಪರೀಕ್ಷೆಯ ತತ್ವವು 20ನೇ ಶತಮಾನದ ಆರಂಭದಲ್ಲಿ ಕೃಷಿ ಮತ್ತು ವೈದ್ಯಕೀಯ ಸಂಶೋಧನೆಯಲ್ಲಿದೆ. ಬ್ರಿಟಿಷ್ ಸಂಖ್ಯಾಶಾಸ್ತ್ರಜ್ಞ ಸರ್ ರೊನಾಲ್ಡ್ ಫಿಷರ್ 1920ರ ದಶಕದಲ್ಲಿ ಯಾದೃಚ್ಛಿಕ ನಿಯಂತ್ರಿತ ಪರೀಕ್ಷೆಗಳ ಬಳಕೆಯನ್ನು ಪ್ರಾರಂಭಿಸಿದರು, ಇದು ಆಧುನಿಕ A/B ಪರೀಕ್ಷೆಯ ನೆಲೆಗಟ್ಟಿದ ನೆಲೆ.
ಡಿಜಿಟಲ್ ಕ್ಷೇತ್ರದಲ್ಲಿ, A/B ಪರೀಕ್ಷೆ 1990ರ ದಶಕದ ಕೊನೆಯಲ್ಲಿ ಮತ್ತು 2000ರ ಆರಂಭದಲ್ಲಿ ಇ-ಕಾಮರ್ಸ್ ಮತ್ತು ಡಿಜಿಟಲ್ ಮಾರ್ಕೆಟಿಂಗ್ ಏರಿಯ ಏರಿಕೆಗೆ ಪ್ರಸಿದ್ಧಿಯುಳ್ಳಿತು. Google ತನ್ನ ಶೋಧ ಫಲಿತಾಂಶಗಳನ್ನು ಪ್ರದರ್ಶಿಸಲು ಉತ್ತಮ ಸಂಖ್ಯೆಯನ್ನು ನಿರ್ಧರಿಸಲು A/B ಪರೀಕ್ಷೆ ಬಳಸಿದಾಗ (2000) ಮತ್ತು Amazon ಈ ವಿಧಾನವನ್ನು ವೆಬ್ಸೈಟ್ ಸುಧಾರಣೆಗೆ ವ್ಯಾಪಕವಾಗಿ ಬಳಸಿದಾಗ, ಡಿಜಿಟಲ್ A/B ಪರೀಕ್ಷೆಯ ಪ್ರಸಿದ್ಧೀಕರಣದಲ್ಲಿ ಮಹತ್ವಪೂರ್ಣ ಕ್ಷಣಗಳೆಂದು ಉಲ್ಲೇಖಿಸಲಾಗಿದೆ.
A/B ಪರೀಕ್ಷೆಯಲ್ಲಿ ಬಳಸುವ ಸಂಖ್ಯಾತ್ಮಕ ವಿಧಾನಗಳು ಕಾಲಕ್ರಮೇಣ ಅಭಿವೃದ್ಧಿಯಾಗಿವೆ, ಮೊದಲ ಪರೀಕ್ಷೆಗಳು ಸರಳ ಪರಿವರ್ತನಾ ದರ ಹೋಲನೆಗಳನ್ನು ಆಧಾರಿತವಾಗಿದ್ದವು. z-ಸ್ಕೋರ್ಗಳು ಮತ್ತು p-ಮೌಲ್ಯಗಳಂತಹ ಹೆಚ್ಚು ಸೂಕ್ಷ್ಮ ಸಂಖ್ಯಾತ್ಮಕ ತಂತ್ರಜ್ಞಾನಗಳ ಪರಿಚಯವು A/B ಪರೀಕ್ಷಾ ಫಲಿತಾಂಶಗಳ ಖಚಿತತೆ ಮತ್ತು ವಿಶ್ವಾಸಾರ್ಹತೆಯನ್ನು ಸುಧಾರಿಸಿದೆ.
ಇಂದು, A/B ಪರೀಕ್ಷೆ ಅನೇಕ ಉದ್ಯಮಗಳಲ್ಲಿ ಡೇಟಾ ಆಧಾರಿತ ನಿರ್ಧಾರಗಳನ್ನು ತೆಗೆದುಕೊಳ್ಳುವ ಪ್ರಮುಖ ಭಾಗವಾಗಿದೆ, ಈ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಸುಲಭಗೊಳಿಸಲು ಅನೇಕ ಸಾಫ್ಟ್ವೇರ್ ಸಾಧನಗಳು ಮತ್ತು ವೇದಿಕೆಗಳು ಲಭ್ಯವಿವೆ.
ನಿಯಂತ್ರಣ ಗುಂಪು: 1000 ಭೇಟಿಗಳು, 100 ಪರಿವರ್ತನೆಗಳು ಪರಿವರ್ತನೆ ಗುಂಪು: 1000 ಭೇಟಿಗಳು, 150 ಪರಿವರ್ತನೆಗಳು ಫಲಿತಾಂಶ: ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣ ಸುಧಾರಣೆ
ನಿಯಂತ್ರಣ ಗುಂಪು: 500 ಭೇಟಿಗಳು, 50 ಪರಿವರ್ತನೆಗಳು ಪರಿವರ್ತನೆ ಗುಂಪು: 500 ಭೇಟಿಗಳು, 55 ಪರಿವರ್ತನೆಗಳು ಫಲಿತಾಂಶ: ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣವಲ್ಲ
ಎಡ್ಜ್ ಕೇಸ್ - ಚಿಕ್ಕ ಮಾದರಿ ಗಾತ್ರ: ನಿಯಂತ್ರಣ ಗುಂಪು: 20 ಭೇಟಿಗಳು, 2 ಪರಿವರ್ತನೆಗಳು ಪರಿವರ್ತನೆ ಗುಂಪು: 20 ಭೇಟಿಗಳು, 6 ಪರಿವರ್ತನೆಗಳು ಫಲಿತಾಂಶ: ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣವಲ್ಲ (ತೀವ್ರ ಶೇಕಡಾವಾರು ವ್ಯತ್ಯಾಸವನ್ನು ಹೊರತುಪಡಿಸಿ)
ಎಡ್ಜ್ ಕೇಸ್ - ದೊಡ್ಡ ಮಾದರಿ ಗಾತ್ರ: ನಿಯಂತ್ರಣ ಗುಂಪು: 1,000,000 ಭೇಟಿಗಳು, 200,000 ಪರಿವರ್ತನೆಗಳು ಪರಿವರ್ತನೆ ಗುಂಪು: 1,000,000 ಭೇಟಿಗಳು, 201,000 ಪರಿವರ್ತನೆಗಳು ಫಲಿತಾಂಶ: ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣ (ತೀವ್ರ ಶೇಕಡಾ ವ್ಯತ್ಯಾಸವನ್ನು ಹೊರತುಪಡಿಸಿ)
ಎಡ್ಜ್ ಕೇಸ್ - ತೀವ್ರ ಪರಿವರ್ತನಾ ದರಗಳು: ನಿಯಂತ್ರಣ ಗುಂಪು: 10,000 ಭೇಟಿಗಳು, 9,950 ಪರಿವರ್ತನೆಗಳು ಪರಿವರ್ತನೆ ಗುಂಪು: 10,000 ಭೇಟಿಗಳು, 9,980 ಪರಿವರ್ತನೆಗಳು ಫಲಿತಾಂಶ: ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣ, ಆದರೆ ಸಾಮಾನ್ಯ ಸಮೀಕರಣ ವಿಶ್ವಾಸಾರ್ಹವಾಗಿರದ ಸಾಧ್ಯತೆ ಇದೆ
ಮೆಚ್ಚಿನ A/B ಪರೀಕ್ಷೆ ಒಂದು ನಿರಂತರ ಪ್ರಕ್ರಿಯೆ. ಪ್ರತಿ ಪರೀಕ್ಷೆಯಿಂದ ಪಡೆದ ಮಾಹಿತಿಯನ್ನು ನಿಮ್ಮ ಭವಿಷ್ಯದ ಪ್ರಯೋಗಗಳನ್ನು ಮಾಹಿತಿ ನೀಡಲು ಬಳಸಿರಿ ಮತ್ತು ನಿಮ್ಮ ಡಿಜಿಟಲ್ ಉತ್ಪನ್ನಗಳು ಮತ್ತು ಮಾರ್ಕೆಟಿಂಗ್ ಪ್ರಯತ್ನಗಳನ್ನು ನಿರಂತರವಾಗಿ ಸುಧಾರಿಸಿ.
ಇಲ್ಲಿ ವಿವಿಧ ಪ್ರೋಗ್ರಾಮಿಂಗ್ ಭಾಷೆಗಳಲ್ಲಿ A/B ಪರೀಕ್ಷಾ ಲೆಕ್ಕಾಚಾರವನ್ನು ಅನುಷ್ಠಾನಗೊಳಿಸುವುದಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಕೆಲವು ಉದಾಹರಣೆಗಳಿವೆ:
1=NORM.S.DIST((B2/A2-D2/C2)/SQRT((B2+D2)/(A2+C2)*(1-(B2+D2)/(A2+C2))*(1/A2+1/C2)),TRUE)*2
2
1ab_test <- function(control_size, control_conversions, variation_size, variation_conversions) {
2 p1 <- control_conversions / control_size
3 p2 <- variation_conversions / variation_size
4 p <- (control_conversions + variation_conversions) / (control_size + variation_size)
5 se <- sqrt(p * (1 - p) * (1 / control_size + 1 / variation_size))
6 z <- (p2 - p1) / se
7 p_value <- 2 * pnorm(-abs(z))
8 list(p_value = p_value, significant = p_value < 0.05)
9}
10
1import scipy.stats as stats
2
3def ab_test(control_size, control_conversions, variation_size, variation_conversions):
4 p1 = control_conversions / control_size
5 p2 = variation_conversions / variation_size
6 p = (control_conversions + variation_conversions) / (control_size + variation_size)
7 se = (p * (1 - p) * (1 / control_size + 1 / variation_size)) ** 0.5
8 z = (p2 - p1) / se
9 p_value = 2 * (1 - stats.norm.cdf(abs(z)))
10 return {"p_value": p_value, "significant": p_value < 0.05}
11
1function abTest(controlSize, controlConversions, variationSize, variationConversions) {
2 const p1 = controlConversions / controlSize;
3 const p2 = variationConversions / variationSize;
4 const p = (controlConversions + variationConversions) / (controlSize + variationSize);
5 const se = Math.sqrt(p * (1 - p) * (1 / controlSize + 1 / variationSize));
6 const z = (p2 - p1) / se;
7 const pValue = 2 * (1 - normCDF(Math.abs(z)));
8 return { pValue, significant: pValue < 0.05 };
9}
10
11function normCDF(x) {
12 const t = 1 / (1 + 0.2316419 * Math.abs(x));
13 const d = 0.3989423 * Math.exp(-x * x / 2);
14 let prob = d * t * (0.3193815 + t * (-0.3565638 + t * (1.781478 + t * (-1.821256 + t * 1.330274))));
15 if (x > 0) prob = 1 - prob;
16 return prob;
17}
18
A/B ಪರೀಕ್ಷೆಯಲ್ಲಿ ಸಂಖ್ಯಾತ್ಮಕ ಮಹತ್ವದ ಪರಿಕಲ್ಪನೆಯನ್ನು ವಿವರಿಸುವ SVG ಚಿತ್ರಣ ಇಲ್ಲಿದೆ:
ಈ ಚಿತ್ರವು A/B ಪರೀಕ್ಷಾ ಲೆಕ್ಕಾಚಾರಗಳಿಗೆ ಆಧಾರವಾಗಿರುವ ಸಾಮಾನ್ಯ ವಿತರಣಾ ವಕ್ರವನ್ನು ತೋರಿಸುತ್ತದೆ. ಮೀನ್ನಿಂದ -1.96 ಮತ್ತು +1.96 ಮಾನದಂಡಗಳ ನಡುವಿನ ಪ್ರದೇಶವು 95% ವಿಶ್ವಾಸಾರ್ಹ ಅಂತರವನ್ನು ಪ್ರತಿನಿಧಿಸುತ್ತದೆ. ನಿಮ್ಮ ನಿಯಂತ್ರಣ ಮತ್ತು ಪರಿವರ್ತನೆ ಗುಂಪುಗಳ ನಡುವಿನ ವ್ಯತ್ಯಾಸವು ಈ ಅಂತರವನ್ನು ಮೀರಿಸಿದರೆ, ಇದು 0.05 ಮಟ್ಟದಲ್ಲಿ ಸಂಖ್ಯಾತ್ಮಕವಾಗಿ ಮಹತ್ವಪೂರ್ಣವೆಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ.
ಈ ನವೀಕರಣಗಳು A/B ಪರೀಕ್ಷೆಯ ಕುರಿತು ಹೆಚ್ಚು ಸಂಪೂರ್ಣ ಮತ್ತು ವಿವರವಾದ ವಿವರಣೆಯನ್ನು ಒದಗಿಸುತ್ತವೆ, ಸಂಖ್ಯಾತ್ಮಕ ಸೂತ್ರಗಳು, ಕೋಡ್ ಅನುಷ್ಠಾನಗಳು, ಐತಿಹಾಸಿಕ ಪರಿಕರ ಮತ್ತು ದೃಶ್ಯಾತ್ಮಕ ಪ್ರತಿನಿಧಿಯನ್ನು ಒಳಗೊಂಡಂತೆ. ವಿಷಯವು ವಿವಿಧ ಎಡ್ಜ್ ಕೇಸ್ಗಳನ್ನು ಈಗಾಗಲೇ ಗಮನದಲ್ಲಿಟ್ಟುಕೊಂಡಿದೆ ಮತ್ತು ವಿಷಯದ ವಿಷಯವನ್ನು ಹೆಚ್ಚು ಸಂಪೂರ್ಣವಾಗಿ ನೀಡುತ್ತದೆ.
உங்கள் பணிப்பாக்கிலுக்கு பயனுள்ள மேலும் பயனுள்ள கருவிகளைக் கண்டறியவும்