Рассчитайте парциальное давление распространенных веществ при различных температурах с использованием уравнения Антуана. Необходимо для приложений в химии, химической инженерии и термодинамике.
H₂O - Бесцветная, без запаха жидкость, необходимая для жизни
Допустимый диапазон: 1°C до 100°C
Уравнение Антуана:
log₁₀(P) = 8.07131 - 1730.63/(233.426 + T)
Loading chart...
График показывает изменение парового давления в зависимости от температуры
Парциальное давление — это фундаментальное физическое свойство, представляющее собой давление, создаваемое паром в термодинамическом равновесии с его конденсированными фазами (твердой или жидкой) при данной температуре. Этот калькулятор парциального давления предоставляет простой, но мощный способ оценить парциальное давление различных веществ при различных температурах с использованием уравнения Антуана. Независимо от того, являетесь ли вы студентом химии, лабораторным техником или химическим инженером, понимание парциального давления имеет важное значение для предсказания фазового поведения, проектирования процессов дистилляции и обеспечения безопасности при обращении с химическими веществами.
Калькулятор позволяет вам выбрать из распространенных веществ, включая воду, спирты и органические растворители, а затем мгновенно рассчитывает парциальное давление при указанной вами температуре. Визуализируя взаимосвязь между температурой и парциальным давлением, вы можете лучше понять характеристики летучести различных веществ и принимать обоснованные решения в своих научных или инженерных приложениях.
Парциальное давление — это мера склонности вещества к испарению. При любой заданной температуре молекулы на поверхности жидкости имеют различные энергии. Те, у которых достаточно энергии, могут преодолеть межмолекулярные силы, удерживающие их в жидком состоянии, и уйти в газовую фазу. С увеличением температуры большее количество молекул получает достаточную энергию для побега, что приводит к повышению парциального давления.
Калькулятор использует уравнение Антуана, полуэмпирическую корреляцию, выведенную из уравнения Клаузиуса-Клапейрона. Это уравнение предоставляет точный метод для расчета парциального давления в пределах определенных температурных диапазонов:
Где:
Параметры уравнения Антуана различаются для каждого вещества и действительны только в определенных диапазонах температур. За пределами этих диапазонов уравнение может давать неточные результаты из-за изменений физических свойств вещества.
Калькулятор включает константы Антуана для нескольких распространенных веществ:
Вещество | A | B | C | Действительный температурный диапазон (°C) |
---|---|---|---|---|
Вода | 8.07131 | 1730.63 | 233.426 | 1-100 |
Метанол | 8.08097 | 1582.271 | 239.726 | 15-100 |
Этанол | 8.20417 | 1642.89 | 230.3 | 20-100 |
Ацетон | 7.11714 | 1210.595 | 229.664 | 0-100 |
Бензол | 6.90565 | 1211.033 | 220.79 | 8-100 |
Толулол | 6.95464 | 1344.8 | 219.482 | 10-100 |
Хлороформ | 6.95465 | 1170.966 | 226.232 | 0-100 |
Диэтиловый эфир | 6.92333 | 1064.07 | 228.8 | 0-100 |
Эти константы были определены с помощью тщательных экспериментальных измерений и обеспечивают точные оценки парциального давления в пределах их указанных температурных диапазонов.
График выше иллюстрирует, как парциальное давление экспоненциально увеличивается с температурой для трех распространенных веществ: воды, этанола и ацетона. Горизонтальная пунктирная линия представляет атмосферное давление (760 мм рт. ст.), при котором вещество будет кипеть. Обратите внимание, что ацетон достигает этой точки при значительно более низкой температуре, чем вода, что объясняет, почему он кипит быстрее при комнатной температуре.
Наш калькулятор парциального давления разработан с учетом простоты и точности. Следуйте этим шагам, чтобы рассчитать парциальное давление выбранного вами вещества:
Выберите вещество: Выберите из выпадающего меню доступные вещества, включая воду, спирты и общие растворители.
Введите температуру: Введите температуру (в °C), при которой вы хотите рассчитать парциальное давление. Убедитесь, что температура находится в пределах допустимого диапазона для выбранного вами вещества.
Просмотрите результаты: Калькулятор мгновенно отобразит:
Анализируйте график: Интерактивный график отображает, как парциальное давление изменяется с температурой для выбранного вами вещества. Текущая температура и давление выделены красным.
Копируйте результаты: Используйте кнопку "Копировать", чтобы скопировать рассчитанное парциальное давление в буфер обмена для использования в отчетах или дальнейших расчетах.
Если вы введете температуру за пределами допустимого диапазона для выбранного вещества, калькулятор отобразит сообщение об ошибке, указывающее допустимый температурный диапазон.
Давайте рассчитаем парциальное давление воды при 25°C, используя уравнение Антуана:
Определите константы Антуана для воды:
Подставьте эти значения в уравнение Антуана:
Рассчитайте парциальное давление, взяв антиполог:
Таким образом, парциальное давление воды при 25°C составляет примерно 23.7 мм рт. ст. Это относительно низкое значение объясняет, почему вода медленно испаряется при комнатной температуре по сравнению с более летучими веществами, такими как ацетон или этанол.
Калькулятор предоставляет парциальное давление в миллиметрах ртутного столба (мм рт. ст.), распространенной единице измерения парциального давления. Вот как интерпретировать результаты:
Например, при 25°C:
Это объясняет, почему ацетон испаряется гораздо быстрее, чем вода при комнатной температуре.
Мобильное приложение Estimator парциального давления имеет чистый, интуитивно понятный интерфейс, разработанный для платформ iOS и Android. Приложение следует принципам минимализма с двумя основными полями ввода:
Выбор вещества: Выпадающее меню, позволяющее пользователям выбирать из распространенных веществ, включая воду, спирты и органические растворители.
Ввод температуры: Поле ввода чисел, где пользователи могут ввести температуру в Цельсиях.
После ввода этих значений приложение мгновенно рассчитывает и отображает парциальное давление, используя уравнение Антуана. Экран результатов показывает:
Приложение работает в офлайн-режиме и требует минимальных системных ресурсов, что делает его доступным на широком диапазоне мобильных устройств. Интерфейс оптимизирован для одноручной работы, с крупными элементами управления и четким, читаемым текстом.
Приложение приоритизирует простоту и точность, избегая ненужных функций, которые могут усложнить пользовательский опыт. Это соответствует основным принципам дизайна предоставления простого инструмента для быстрого расчета парциального давления на ходу.
Понимание и расчет парциального давления имеют множество практических применений в различных областях:
Проектирование процессов дистилляции: Различия в парциальных давлениях между компонентами позволяют отделять их в колоннах дистилляции. Инженеры используют данные о парциальном давлении для определения условий работы и спецификаций колонн.
Процессы испарения и сушки: Расчет парциального давления помогает оптимизировать процессы сушки, предсказывая скорости испарения при различных температурах.
Проектирование резервуаров для хранения: Правильное проектирование резервуаров для летучих жидкостей требует понимания парциального давления для предотвращения чрезмерного повышения давления.
Моделирование атмосферного загрязнения: Данные о парциальном давлении помогают предсказать, как химические вещества будут распределяться между воздухом и водой в окружающей среде.
Очистка воды: Понимание парциального давления загрязняющих веществ помогает в проектировании эффективных процессов аэрации для очистки воды.
Формулирование лекарств: Парциальное давление влияет на стабильность и срок хранения жидких медикаментов и определяет соответствующие требования к упаковке.
Процессы сублимационной сушки: Процессы лиофилизации зависят от понимания поведения парциального давления воды и растворителей при различных температурах.
Вакуумная дистилляция: Расчет парциального давления при пониженных давлениях помогает определить соответствующие условия для вакуумной дистилляции.
Ротационная выпарка: Оптимизация настроек ротационного выпаривателя на основе парциального давления растворителя улучшает эффективность и предотвращает вспенивание.
Хранение летучих химикатов: Правильные условия хранения для летучих химикатов определяются на основе их характеристик парциального давления.
Обращение с опасными материалами: Данные о парциальном давлении имеют решающее значение для оценки рисков пожара и взрыва летучих веществ.
Выбор респираторов: Подбор соответствующей защиты органов дыхания осуществляется на основе парциального давления опасных химических веществ.
Хотя уравнение Антуана обеспечивает хорошую точность для многих приложений, существуют альтернативные методы определения парциального давления:
Уравнение Клаузиуса-Клапейрона: Более фундаментальное термодинамическое уравнение, связывающее парциальное давление с температурой, энтальпией испарения и газовой постоянной.
Уравнение Вагнера: Обеспечивает улучшенную точность на более широких температурных диапазонах, но требует больше параметров.
Прямое измерение: Экспериментальные методы, такие как изотенископия, эбулиометрия или методы насыщения газа, предоставляют прямые измерения парциального давления.
Методы группового вклада: Эти методы оценивают парциальное давление на основе молекулярной структуры, когда экспериментальные данные недоступны.
Вычеслительная химия: Методы молекулярного моделирования могут предсказывать парциальное давление из первых принципов.
Концепция парциального давления значительно развивалась на протяжении веков:
Ранние наблюдения (17-18 века): Ученые, такие как Роберт Бойль и Жак Шарль, наблюдали взаимосвязь между давлением, объемом и температурой газов, но еще не формализовали концепцию парциального давления.
Закон частичных давлений Дальтона (1801): Джон Дальтон предложил, что общее давление газовой смеси равно сумме давлений, которые каждый газ будет оказывать, если он занимал бы объем в одиночку, заложив основу для понимания парциального давления.
Уравнение Клаузиуса-Клапейрона (1834): Бенуа Поль Эмиль Клапейрон и позже Рудольф Клаузиус разработали теоретическую основу, связывающую парциальное давление с температурой и теплотой испарения.
Уравнение Антуана (1888): Луи Шарль Антуан разработал свое упрощенное уравнение для расчета парциального давления, которое остается широко используемым до сих пор благодаря практическому балансу простоты и точности.
Современные разработки (20 век и далее): Более сложные уравнения, такие как уравнение Вагнера, и вычислительные методы были разработаны для более высокой точности на более широких температурных диапазонах.
Вычислительные методы (21 век): Современные методы вычислительной химии теперь позволяют предсказывать парциальное давление на основе молекулярной структуры и первых принципов.
Вот примеры того, как реализовать уравнение Антуана для расчета парциального давления на различных языках программирования:
1' Excel функция для расчета парциального давления с использованием уравнения Антуана
2Function VaporPressure(temperature As Double, A As Double, B As Double, C As Double) As Double
3 VaporPressure = 10 ^ (A - B / (C + temperature))
4End Function
5
6' Пример использования для воды при 25°C
7' =VaporPressure(25, 8.07131, 1730.63, 233.426)
8
1import math
2
3def calculate_vapor_pressure(temperature, A, B, C):
4 """
5 Рассчитать парциальное давление с использованием уравнения Антуана
6
7 Аргументы:
8 temperature: Температура в Цельсиях
9 A, B, C: Константы уравнения Антуана для вещества
10
11 Возвращает:
12 Парциальное давление в мм рт. ст.
13 """
14 return 10 ** (A - B / (C + temperature))
15
16# Пример для воды при 25°C
17water_constants = {"A": 8.07131, "B": 1730.63, "C": 233.426}
18temperature = 25
19vapor_pressure = calculate_vapor_pressure(
20 temperature,
21 water_constants["A"],
22 water_constants["B"],
23 water_constants["C"]
24)
25print(f"Парциальное давление воды при {temperature}°C: {vapor_pressure:.2f} мм рт. ст.")
26
1/**
2 * Рассчитать парциальное давление с использованием уравнения Антуана
3 * @param {number} temperature - Температура в Цельсиях
4 * @param {number} A - Константа Антуана A
5 * @param {number} B - Константа Антуана B
6 * @param {number} C - Константа Антуана C
7 * @returns {number} Парциальное давление в мм рт. ст.
8 */
9function calculateVaporPressure(temperature, A, B, C) {
10 return Math.pow(10, A - B / (C + temperature));
11}
12
13// Пример для этанола при 30°C
14const ethanolConstants = {
15 A: 8.20417,
16 B: 1642.89,
17 C: 230.3
18};
19
20const temperature = 30;
21const vaporPressure = calculateVaporPressure(
22 temperature,
23 ethanolConstants.A,
24 ethanolConstants.B,
25 ethanolConstants.C
26);
27
28console.log(`Парциальное давление этанола при ${temperature}°C: ${vaporPressure.toFixed(2)} мм рт. ст.`);
29
1public class VaporPressureCalculator {
2 /**
3 * Рассчитать парциальное давление с использованием уравнения Антуана
4 *
5 * @param temperature Температура в Цельсиях
6 * @param A Константа Антуана A
7 * @param B Константа Антуана B
8 * @param C Константа Антуана C
9 * @return Парциальное давление в мм рт. ст.
10 */
11 public static double calculateVaporPressure(double temperature, double A, double B, double C) {
12 return Math.pow(10, A - B / (C + temperature));
13 }
14
15 public static void main(String[] args) {
16 // Пример для ацетона при 20°C
17 double temperature = 20;
18 double A = 7.11714;
19 double B = 1210.595;
20 double C = 229.664;
21
22 double vaporPressure = calculateVaporPressure(temperature, A, B, C);
23 System.out.printf("Парциальное давление ацетона при %.1f°C: %.2f мм рт. ст.%n", temperature, vaporPressure);
24 }
25}
26
1#include <iostream>
2#include <cmath>
3#include <iomanip>
4
5/**
6 * Рассчитать парциальное давление с использованием уравнения Антуана
7 *
8 * @param temperature Температура в Цельсиях
9 * @param A Константа Антуана A
10 * @param B Константа Антуана B
11 * @param C Константа Антуана C
12 * @return Парциальное давление в мм рт. ст.
13 */
14double calculateVaporPressure(double temperature, double A, double B, double C) {
15 return pow(10.0, A - B / (C + temperature));
16}
17
18int main() {
19 // Пример для бензола при 25°C
20 double temperature = 25.0;
21 double A = 6.90565;
22 double B = 1211.033;
23 double C = 220.79;
24
25 double vaporPressure = calculateVaporPressure(temperature, A, B, C);
26
27 std::cout << "Парциальное давление бензола при " << temperature << "°C: "
28 << std::fixed << std::setprecision(2) << vaporPressure << " мм рт. ст." << std::endl;
29
30 return 0;
31}
32
1# R функция для расчета парциального давления с использованием уравнения Антуана
2calculate_vapor_pressure <- function(temperature, A, B, C) {
3 return(10^(A - B / (C + temperature)))
4}
5
6# Пример для толуола при 30°C
7temperature <- 30
8toluene_constants <- list(A = 6.95464, B = 1344.8, C = 219.482)
9
10vapor_pressure <- calculate_vapor_pressure(
11 temperature,
12 toluene_constants$A,
13 toluene_constants$B,
14 toluene_constants$C
15)
16
17cat(sprintf("Парциальное давление толуола при %.1f°C: %.2f мм рт. ст.\n",
18 temperature, vapor_pressure))
19
1/**
2 * Рассчитать парциальное давление с использованием уравнения Антуана
3 *
4 * - Параметры:
5 * - temperature: Температура в Цельсиях
6 * - a: Константа Антуана A
7 * - b: Константа Антуана B
8 * - c: Константа Антуана C
9 * - Возвращает: Парциальное давление в мм рт. ст.
10 */
11func calculateVaporPressure(temperature: Double, a: Double, b: Double, c: Double) -> Double {
12 return pow(10, a - b / (c + temperature))
13}
14
15// Пример для хлороформа при 25°C
16let temperature = 25.0
17let a = 6.95465
18let b = 1170.966
19let c = 226.232
20
21let vaporPressure = calculateVaporPressure(temperature: temperature, a: a, b: b, c: c)
22print("Парциальное давление хлороформа при \(temperature)°C: \(String(format: "%.2f", vaporPressure)) мм рт. ст.")
23
1using System;
2
3class VaporPressureCalculator
4{
5 /**
6 * Рассчитать парциальное давление с использованием уравнения Антуана
7 *
8 * @param temperature Температура в Цельсиях
9 * @param A Константа Антуана A
10 * @param B Константа Антуана B
11 * @param C Константа Антуана C
12 * @return Парциальное давление в мм рт. ст.
13 */
14 public static double CalculateVaporPressure(double temperature, double A, double B, double C)
15 {
16 return Math.Pow(10, A - B / (C + temperature));
17 }
18
19 static void Main(string[] args)
20 {
21 // Пример для диэтилового эфира при 20°C
22 double temperature = 20.0;
23 double A = 6.92333;
24 double B = 1064.07;
25 double C = 228.8;
26
27 double vaporPressure = CalculateVaporPressure(temperature, A, B, C);
28 Console.WriteLine($"Парциальное давление диэтилового эфира при {temperature}°C: {vaporPressure:F2} мм рт. ст.");
29 }
30}
31
1<?php
2/**
3 * Рассчитать парциальное давление с использованием уравнения Антуана
4 *
5 * @param float $temperature Температура в Цельсиях
6 * @param float $A Константа Антуана A
7 * @param float $B Константа Антуана B
8 * @param float $C Константа Антуана C
9 * @return float Парциальное давление в мм рт. ст.
10 */
11function calculateVaporPressure($temperature, $A, $B, $C) {
12 return pow(10, $A - $B / ($C + $temperature));
13}
14
15// Пример для метанола при 30°C
16$temperature = 30.0;
17$A = 8.08097;
18$B = 1582.271;
19$C = 239.726;
20
21$vaporPressure = calculateVaporPressure($temperature, $A, $B, $C);
22printf("Парциальное давление метанола при %.1f°C: %.2f мм рт. ст.\n", $temperature, $vaporPressure);
23?>
24
1package main
2
3import (
4 "fmt"
5 "math"
6)
7
8/**
9 * Рассчитать парциальное давление с использованием уравнения Антуана
10 *
11 * @param temperature Температура в Цельсиях
12 * @param A Константа Антуана A
13 * @param B Константа Антуана B
14 * @param C Константа Антуана C
15 * @return Парциальное давление в мм рт. ст.
16 */
17func calculateVaporPressure(temperature, A, B, C float64) float64 {
18 return math.Pow(10, A - B/(C + temperature))
19}
20
21func main() {
22 // Пример для воды при 50°C
23 temperature := 50.0
24 A := 8.07131
25 B := 1730.63
26 C := 233.426
27
28 vaporPressure := calculateVaporPressure(temperature, A, B, C)
29 fmt.Printf("Парциальное давление воды при %.1f°C: %.2f мм рт. ст.\n", temperature, vaporPressure)
30}
31
1/**
2 * Рассчитать парциальное давление с использованием уравнения Антуана
3 *
4 * @param temperature Температура в Цельсиях
5 * @param a Константа Антуана A
6 * @param b Константа Антуана B
7 * @param c Константа Антуана C
8 * @return Парциальное давление в мм рт. ст.
9 */
10fn calculate_vapor_pressure(temperature: f64, a: f64, b: f64, c: f64) -> f64 {
11 10.0_f64.powf(a - b / (c + temperature))
12}
13
14fn main() {
15 // Пример для ацетона при 15°C
16 let temperature = 15.0;
17 let a = 7.11714;
18 let b = 1210.595;
19 let c = 229.664;
20
21 let vapor_pressure = calculate_vapor_pressure(temperature, a, b, c);
22 println!("Парциальное давление ацетона при {:.1}°C: {:.2} мм рт. ст.", temperature, vapor_pressure);
23}
24
Парциальное давление — это давление, создаваемое паром конкретного вещества, когда оно находится в равновесии с его жидкой или твердой фазой при определенной температуре. Оно измеряет, насколько легко вещество испаряется — вещества с более высоким парциальным давлением испаряются легче, чем те, у которых парциальное давление ниже.
Температура оказывает сильное положительное влияние на парциальное давление. С повышением температуры молекулы получают больше кинетической энергии, что позволяет большему количеству из них преодолеть межмолекулярные силы и перейти в газовую фазу. Эта взаимосвязь экспоненциальная, а не линейная, поэтому кривые парциального давления показывают резкое увеличение при более высоких температурах.
Парциальное давление — это давление, создаваемое паром конкретного вещества, когда оно находится в равновесии с его жидкой или твердой фазой. Атмосферное давление — это общее давление, создаваемое всеми газами в атмосфере Земли. Когда парциальное давление вещества равно атмосферному давлению, это вещество кипит.
Дистилляция основана на различиях в парциальных давлениях между компонентами смеси. Вещества с более высоким парциальным давлением более охотно испаряются и могут быть отделены от веществ с более низким парциальным давлением. Понимание парциального давления помогает оптимизировать условия дистилляции для эффективного разделения.
Да, парциальное давление можно измерить напрямую с помощью нескольких экспериментальных методов:
Когда парциальное давление вещества равно окружающему атмосферному давлению, это вещество кипит. Именно поэтому вода кипит при 100°C на уровне моря (где атмосферное давление составляет примерно 760 мм рт. ст.), но кипит при более низких температурах на больших высотах, где атмосферное давление ниже.
Уравнение Антуана обеспечивает хорошую точность (обычно в пределах 1-5%) в пределах указанного температурного диапазона для каждого вещества. За пределами этих диапазонов точность снижается. Для высокоточных приложений или экстремальных условий могут быть предпочтительнее более сложные уравнения, такие как уравнение Вагнера.
Распространенные единицы для парциального давления включают:
Молекулярная структура значительно влияет на парциальное давление через:
Этот калькулятор предназначен для чистых веществ. Для смесей парциальное давление следует закону Рауля для идеальных растворов, где частичное парциальное давление каждого компонента равно его мольной доле, умноженной на его чистое парциальное давление. Для неидеальных смесей необходимо учитывать коэффициенты активности.
Полинг, Б. Е., Празнитц, Дж. М., & О'Коннелл, Дж. П. (2001). Свойства газов и жидкостей (5-е изд.). McGraw-Hill.
Смит, Дж. М., Ван Несс, Х. С., & Абботт, М. М. (2017). Введение в термодинамику химической инженерии (8-е изд.). McGraw-Hill Education.
Антуан, К. (1888). "Тензии паров: новое соотношение между тензиями и температурами." Коммюнике Академии наук, 107, 681-684, 778-780, 836-837.
NIST Chemistry WebBook, SRD 69. Национальный институт стандартов и технологий. https://webbook.nist.gov/chemistry/
Яус, Ч. Л. (2007). Справочник Яуса по парциальному давлению: Константы Антуана (2-е изд.). Gulf Professional Publishing.
Рейд, Р. Х., & Грин, Д. У. (2008). Справочник химических инженеров Перри (8-е изд.). McGraw-Hill.
Перри, Р. Х., & Грин, Д. У. (2008). Справочник химических инженеров Перри (8-е изд.). McGraw-Hill.
Калькулятор парциального давления предоставляет быстрый и точный способ оценить парциальное давление различных веществ при разных температурах с использованием хорошо установленного уравнения Антуана. Понимание парциального давления имеет решающее значение для множества приложений в химии, химической инженерии, экологической науке и управлении безопасностью.
Используя этот калькулятор, вы можете:
Для получения наиболее точных результатов убедитесь, что вы работаете в пределах допустимого диапазона температур для выбранного вами вещества. Для специализированных приложений, требующих более высокой точности, или для веществ, не включенных в нашу базу данных, рассмотрите возможность обращения к более полным справочным источникам или проведения прямых экспериментальных измерений.
Попробуйте наш калькулятор парциального давления сегодня, чтобы быстро определить парциальные давления для ваших химических приложений и экспериментов!
Откройте больше инструментов, которые могут быть полезны для вашего рабочего процесса